Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecotoxicol Environ Saf ; 262: 115128, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315361

RESUMO

Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.

2.
BMC Immunol ; 22(1): 72, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749650

RESUMO

Macrophages are involved in the pathophysiology of many diseases as critical cells of the innate immune system. Pyroptosis is a form of macrophage death that induces cytokinesis of phagocytic substances in the macrophages, thereby defending against infection. Dimethyl itaconate (DI) is an analog of itaconic acid with anti-inflammatory effects. However, the effect of dimethyl itaconate on macrophage pyroptosis has not been elucidated clearly. Thus, the present study aimed to analyze the effect of DI treatment on a macrophage pyroptosis model (Lipopolysaccharide, LPS + Adenosine Triphosphate, ATP). The results showed that 0.25 mM DI ameliorated macrophage pyroptosis and downregulated interleukin (IL)-1ß expression. Then, real-time quantitative polymerase chain reaction (RT-qPCR) was used to confirm the result of RNA-sequencing of the upregulated oxidative stress-related genes (Gclc and Gss) and downregulated inflammation-related genes (IL-12ß and IL-1ß). In addition, Gene Ontology (GO) enrichment analysis showed that differential genes were associated with transcript levels and DNA replication. Kyoto encyclopedia of genes and genomes (KEGG) enrichment showed that signaling pathways, such as tumor necrosis factor (TNF), Jak, Toll-like receptor and IL-17, were altered after DI treatment. N-acetyl-L-cysteine (NAC) reversed the DI effect on the LPS + ATP-induced macrophage pyroptosis and upregulated the IL-1ß expression. Oxidative stress-related protein Nrf2 is involved in the DI regulation of macrophage pyroptosis. Taken together, these findings suggested that DI alleviates the pyroptosis of macrophages through oxidative stress.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/imunologia , Fator 2 Relacionado a NF-E2/metabolismo , Piroptose/efeitos dos fármacos , Succinatos/farmacologia , Trifosfato de Adenosina/imunologia , Animais , Células Cultivadas , Imunidade Inata , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo
3.
Ann Bot ; 127(3): 327-336, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33159517

RESUMO

BACKGROUND AND AIMS: Plant invasions can change soil microbial communities and affect subsequent invasions directly or indirectly via foliar herbivory. It has been proposed that invaders promote uniform biotic communities that displace diverse, spatially variable communities (the biotic homogenization hypothesis), but this has not been experimentally tested for soil microbial communities, so the underlying mechanisms and dynamics are unclear. Here, we compared density-dependent impacts of the invasive plant Alternanthera philoxeroides and its native congener A. sessilis on soil fungal communities, and their feedback effects on plants and a foliar beetle. METHODS: We conducted a plant-soil feedback (PSF) experiment and a laboratory bioassay to examine PSFs associated with the native and invasive plants and a beetle feeding on them. We also characterized the soil fungal community using high-throughput sequencing. KEY RESULTS: We found locally differentiated soil fungal pathogen assemblages associated with high densities of the native plant A. sessilis but little variation in those associated with the invasive congener A. philoxeroides, regardless of plant density. In contrast, arbuscular mycorrhizal fungal assemblages associated with high densities of the invasive plant were more variable. Soil biota decreased plant shoot mass but their effect was weak for the invasive plant growing in native plant-conditioned soils. PSFs increased the larval biomass of a beetle reared on leaves of the native plant only. Moreover, PSFs on plant shoot and root mass and beetle mass were predicted by different pathogen taxa in a plant species-specific manner. CONCLUSION: Our results suggest that plant invasions can rapidly increase the similarity of soil pathogen assemblages even at low plant densities, leading to taxonomically and functionally homogeneous soil communities that may limit negative soil effects on invasive plants.


Assuntos
Amaranthaceae , Micobioma , Animais , Herbivoria , Plantas , Solo , Microbiologia do Solo
4.
J Pharmacol Sci ; 147(1): 143-155, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294366

RESUMO

This study aimed to investigate the therapeutic potential of human umbilical cord mesenchymal stem cells derived exosomes (hUCMSC-Exo) in acute liver failure (ALF) in mice as well as its underlying mechanism. We found that a single tail vein administration of hucMSC-Exo effectively enhanced the survival rate, inhibited apoptosis in hepatocytes, and improved liver function in APAP-induced mouse model of ALF. Furthermore, the deletion of glutathione (GSH) and superoxide dismutase (SOD), generation of malondialdehyde (MDA), and the over production of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP were also inhibited by hucMSC-Exo, indicating that hucMSC-Exo inhibited APAP-induced apoptosis of hepatocytes by reducing oxidative stress. Moreover, hucMSC-Exo significantly down-regulated the levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α in APAP-treated livers. Western blot showed that hucMSC-Exo significantly promoted the activation of ERK1/2 and IGF-1R/PI3K/AKT signaling pathways in APAP-injured LO2 cells, resulting in the inhibition of apoptosis of LO2 cells. Importantly, PI3K inhibitor LY294002 and ERK1/2 inhibitor PD98059 could reverse the function of hucMSC-Exo on APAP-injured LO2 cells in some extent. Our results suggest that hucMSC-Exo offer antioxidant hepatoprotection against APAP in vitro and in vivo by inhibitiing oxidative stress-induced apoptosis via upregulation of ERK1/2 and PI3K/AKT signaling pathways.


Assuntos
Acetaminofen/efeitos adversos , Exossomos/fisiologia , Falência Hepática/induzido quimicamente , Falência Hepática/genética , Sistema de Sinalização das MAP Quinases/genética , Células-Tronco Mesenquimais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/genética , Cordão Umbilical/citologia , Animais , Apoptose/genética , Células Cultivadas , Modelos Animais de Doenças , Hepatócitos/patologia , Humanos , Falência Hepática/patologia , Camundongos , Estresse Oxidativo/genética
5.
Microbiol Res ; 282: 127657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422862

RESUMO

Halophytes inhabit saline soils, wherein most plants cannot grow, therefore, their ecological value is outstanding. Arbuscular mycorrhizal (AM) fungi can reconstruct microbial communities to assist plants with stress tolerance. However, little information is available on the microbial community assembly of AM fungi in halophytes. A pot experiment was conducted to investigate the effects of AM fungi on rhizosphere bacterial community structure and soil physiochemical characteristics in the halophyte Suaeda salsa at 0, 100, and 400 mM NaCl. The results demonstrated that AM fungi increased soil alkaline phosphatase (ALP) activity at the three NaCl concentrations, and decreased available P, available K, and the activity of soil catalase (CAT) at 100 mM NaCl. AM fungi decreased the Shannon index of the community at 0 and 100 mM NaCl and increased Sobs index at 400 mM NaCl. Regarding the bacterial community structure, AM fungi substantially decreased the abundance of Acidobacteria phylum at 0 and 100 mM NaCl. AM fungi significantly increased the abundance of genus Ramlibacter, an oxyanion-reducing bacteria that can clean out reactive oxygen species (ROS). AM fungi recruited the genera Massilia and Arthrobacter at 0 and 100 mM NaCl, respectively. Some strains in the two genera have been ascribed to plant growth promoting bacteria (PGPB). AM fungi increased the dry weight and promoted halophyte growth at all three NaCl levels. This study supplements the understanding that AM fungi assemble rhizosphere bacterial communities in halophytes.


Assuntos
Chenopodiaceae , Micorrizas , Plantas Tolerantes a Sal , Cloreto de Sódio , Fungos , Bactérias/genética , Solo/química , Microbiologia do Solo
6.
BMJ Open ; 14(3): e079237, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521528

RESUMO

OBJECTIVES: There are limited data on the relationship between sleep duration and possible sarcopenia. Hence, this study aimed to investigate the associations of sleep duration with possible sarcopenia and its defining components based on the China Health and Retirement Longitudinal Study (CHARLS). DESIGN: A retrospective cohort study. SETTING: This study was conducted on participants aged over 45 years applying the 2011 baseline and 2015 follow-up survey from CHARLS covering 450 villages, 150 counties and 28 provinces. PARTICIPANTS: Data from 5036 individuals (2568 men and 2468 women) free of possible sarcopenia at baseline were analysed. PRIMARY AND SECONDARY OUTCOME MEASURES: The dose-response relationship between sleep duration and possible sarcopenia. RESULTS: During 4 years of follow-up, 964 (19.14%) participants developed possible sarcopenia. Compared with participants who slept 6-8 hours per night, those with shorter sleep duration (<6 hours per night) were independently associated with 22% (OR, 1.22; 95% CI, 1.04 to 1.44) increased risk of developing possible sarcopenia and 27% (OR, 1.27; 95% CI, 1.04 to 1.57) increased risk of developing low handgrip strength after controlling for potential confounders. Long sleep duration (>8 hours per night) was not significantly associated with incident possible sarcopenia. The plots of restricted cubic splines exhibited an atypical inverse J-shaped association between sleep duration and possible sarcopenia. Subgroup analysis showed a stronger association between sleep duration and possible sarcopenia in participants aged 45-59 years and composed of male populations. CONCLUSIONS: Short sleep duration was a potential risk factor for possible sarcopenia and low handgrip strength. The improvement of sleep duration should be considered a target in early preventive and administrative strategies against the development of handgrip strength decline and further reduced the occurrence of sarcopenia.


Assuntos
Sarcopenia , Transtornos do Sono-Vigília , Humanos , Masculino , Feminino , Estudos Longitudinais , Aposentadoria , Sarcopenia/epidemiologia , Duração do Sono , Força da Mão/fisiologia , Estudos Retrospectivos , Sono/fisiologia , Transtornos do Sono-Vigília/epidemiologia , China/epidemiologia
7.
Brain Res ; 1832: 148863, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492841

RESUMO

BACKGROUND: Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons and neuroinflammation. Previous research has identified the involvement of Poly (rC)-binding protein 1 (PCBP1) in certain degenerative diseases; however, its specific mechanisms in PD remain incompletely understood. METHODS: In this study, 6-OHDA-induced neurotoxicity in the cell lines SH-SY5Y, BV-2 and HA, was used to evaluate the protective effects of PCBP1. We assessed alterations in BDNF levels in SY5Y cells, changes in GDNF expression in glial cells, as well as variations in HSP70 and NF-κB activation. Additionally, glial cells were used as the in vitro model for neuroinflammation mechanisms. RESULTS: The results indicate that the overexpression of PCBP1 significantly enhances cell growth compared to the control plasmid pEGFP/N1 group. Overexpression of PCBP1 leads to a substantial reduction in early apoptosis rates in SH-SY5Y, HA, and BV-2 cells, with statistically significant differences (p < 0.05). Furthermore, the overexpression of PCBP1 in cells results in a marked increase in the expression of HSP70, GDNF, and BDNF, while reducing NF-κB expression. Additionally, in SH-SY5Y, HA, and BV-2 cells overexpressing PCBP1, there is a decrease in the inflammatory factor IL-6 compared to the control plasmid pEGFP/N1 group, while BV-2 cells exhibit a significant increase in the anti-inflammatory factor IL-10. CONCLUSION: Our findings suggest that PCBP1 plays a substantial role in promoting cell growth and modulating the balance of neuroprotective and inflammatory factors. These results offer valuable insights into the potential therapeutic utility of PCBP1 in mitigating neuroinflammation and enhancing neuronal survival in PD.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Oxidopamina/toxicidade , NF-kappa B/metabolismo , Proteínas de Transporte , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Doenças Neuroinflamatórias , Linhagem Celular Tumoral , Apoptose , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia
8.
Exp Neurol ; 377: 114798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670251

RESUMO

Mitochondrial dysfunction is closely related to brain injury and neurological dysfunction in ischemic stroke. Adenylate kinase 4 (AK4) plays a critical role in energy metabolism and mitochondrial homeostasis. However, the underlying mechanisms remain unclear. In the present study, we demonstrated an important role of AK4 in mitochondrial dysfunction in the early cerebral ischemia. Early focal cerebral ischemia induced decrease of AK4 protein expression in ischemic hemispheric brain tissue in mice. Exposure of cultured primary neuron to oxygen-glucose deprivation (OGD) also induced AK4 downregulation. Overexpression of AK4 in neuron using adeno-associated virus (AAV-AK4) in mice promoted neuronal survival reflected by decreased infarction volume and TUNEL staining. AK4 overexpression inhibited mitochondrial decline and downregulation of energy metabolism-associated proteins (p-AMPK and ATP1A3) induced by MCAO. Moreover, AK4 knock-in using lentivirus carried AK4 vector (LV-AK4) induced energy metabolism shift from glycolysis to oxidation in neuron. Using transmission electron microscope and western blot, we revealed that AK4 overexpression promoted mitophagy and mitophagy-associated proteins expression PINK1 and Parkin after MCAO. Mass spectrometry and co-immunoprecipitation revealed an interaction between AK4 and PKM2. Mechanistically, AK4 indirectly decreased PKM2 expression via enhancing its ubiquitination by increasing the interaction between PKM2 and its ubiquitin E3 ligase Parkin, and inhibits Parkin downregulation. In conclusion, our data demonstrate that AK4/ Parkin /PKM axis prevents cerebral ischemia damage via regulation of neuronal energy metabolism model and mitophagy. AK4 was a new target for intervention of early ischemic neuron injury.


Assuntos
Adenilato Quinase , Isquemia Encefálica , Metabolismo Energético , Camundongos Endogâmicos C57BL , Mitofagia , Neurônios , Ubiquitina-Proteína Ligases , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Metabolismo Energético/fisiologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Masculino , Mitofagia/fisiologia , Adenilato Quinase/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Transdução de Sinais/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Piruvato Quinase
9.
Heliyon ; 10(11): e32089, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882368

RESUMO

Introduction: Body mass index (BMI) can predict mortality in critically ill patients. Moreover, mortality is related to increased bilirubin levels. Thus, herein, we aimed to investigate the effect of bilirubin levels on the usefulness of BMI in predicting mortality in critically ill patients. Methods: Data were extracted from the Medical Information Mart for Intensive Care (MIMIC IV) database. Patients were divided into two groups according to their total bilirubin levels within 24 h. Cox proportional hazard regression models were applied to obtain adjusted hazard ratios and 95 % confidence intervals for the correlation between BMI categories and hospital mortality. The dose-response relationship was flexibly modeled using a restricted cubic spline (RCS) with three knots. Results: Of the 14376 patients included, 3.4 % were underweight, 29.3 % were of normal body weight, 32.2 % were overweight, and 35.1 % were obese. For patients with total bilirubin levels <2 mg/dL, hospital mortality was significantly lower in patients with obesity than in normal body weight patients (p < 0.05). However, the opposite results were observed for patients with total bilirubin levels ≥2 mg/dL. The Cox proportional hazard regression models suggested that the risk of death was lower in patients with overweightness and obesity than in normal body weight patients when the total bilirubin levels were <2 mg/dL, but not in the other case (total bilirubin levels ≥2 mg/dL). RCS analyses showed that, for patients with total bilirubin levels <2 mg/dL, the risk of death gradually decreased with increasing BMI. Conversely, for patients with total bilirubin levels ≥2 mg/dL, this risk did not decrease with increasing BMI until reaching obesity, after which it increased rapidly. Conclusion: BMI predicted the risk of death differently in critically ill patients with different bilirubin levels.

10.
Sci Total Environ ; 922: 171278, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417528

RESUMO

Bio-organic fertilizer (BOF) was effective to promote the phytoremediation efficiency of heavy metal(loid)s-contaminated saline soil (HCSS) by improving rhizosphere soil properties, especially microbiome. However, there existed unclear impacts of BOF on plant metabolome and plant-driven manipulation on rhizosphere soil microbiota in HCSS, which were pivotal contributors to stress defense of plants trapped in adverse conditions. Here, a pot experiment was conducted to explore the mechanisms of BOF in improving alfalfa (Medicago sativa)-performing phytoremediation of HCSS. BOF application significantly increased the biomass (150.87-401.58 %) to support the augments of accumulation regarding heavy metal(loid)s (87.50 %-410.54 %) and salts (38.27 %-271.04 %) in alfalfa. BOF promoted nutrients and aggregates stability but declined pH of rhizosphere soil, accompanied by the boosts of rhizomicrobiota including increased activity, reshaped community structure, enriched plant growth promoting rhizobacteria (Blastococcus, Modestobacter, Actinophytocola, Bacillus, and Streptomyces), strengthened mycorrhizal symbiosis (Leohumicola, Funneliformis, and unclassified_f_Ceratobasidiaceae), optimized co-occurrence networks, and beneficial shift of keystones. The conjoint analysis of plant metabolome and physiological indices confirmed that BOF reprogrammed the metabolic processes (synthesis, catabolism, and long-distance transport of amino acid, lipid, carbohydrate, phytohormone, stress-resistant secondary metabolites, etc) and physiological functions (energy supply, photosynthesis, plant immunity, nutrients assimilation, etc) that are associated intimately. The consortium of root metabolome, soil metabolome, and soil microbiome revealed that BOF facilitated the exudation of metabolites correlated with rhizomicrobiota (structure, biomarker, and keystone) and rhizosphere oxidative status, e.g., fatty acyls, phenols, coumarins, phenylpropanoids, highlighting the plant-driven regulation on rhizosphere soil microbes and environment. By compiling various results and omics data, it was concluded that BOF favored the adaptation and phytoremediation efficiency of alfalfa by mediating the plant-soil-rhizomicrobiota interactions. The results would deepen understanding of the mechanisms by which BOF improved phytoremediation of HCSS, and provide theoretical guidance to soil amelioration and BOF application.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Fertilizantes/análise , Biodegradação Ambiental , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Microbiologia do Solo , Rizosfera , Raízes de Plantas/metabolismo
11.
J Hazard Mater ; 448: 130982, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860055

RESUMO

Soil salinization and heavy metal (HM) pollution are global environmental problems. Bioorganic fertilizers facilitate phytoremediation, but their roles and microbial mechanisms in natural HM-contaminated saline soils have not been explored. Therefore, greenhouse pot trials were conducted with three treatments: control (CK), manure bioorganic fertilizer (MOF), and lignite bioorganic fertilizer (LOF). The results showed that MOF and LOF significantly increased nutrient uptake, biomass, toxic ion accumulation in Puccinellia distans, soil available nutrients, SOC, and macroaggregates. More biomarkers were enriched in MOF and LOF. Network analysis confirmed that MOF and LOF increased the number of bacterial functional groups and fungal community stability and strengthened their positive association with plants; Bacteria have a more significant effect on phytoremediation. Most biomarkers and keystones play important roles in promoting plant growth and stress resistance in the MOF and LOF treatments. In summary, besides enrichment of soil nutrients, MOF and LOF can also improve the adaptability and phytoremediation efficiency of P. distans by regulating the soil microbial community, with LOF having a greater effect.


Assuntos
Metais Pesados , Microbiota , Fertilizantes , Poaceae , Solo
12.
Neuromuscul Disord ; 33(9): 81-89, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620213

RESUMO

Neutral lipid-storage disease with myopathy (NLSDM) is an autosomal recessive neuromuscular disorder caused by mutations in PNPLA2, and the average age at onset is 30 years. To date, only eight patients with childhood-onset NLSDM have been reported in detail. We investigated 3 unreported patients with NLSDM detected in childhood and reviewed 8 childhood-onset and 82 adult-onset patients with NLSDM documented in the literature. In the childhood-onset cohort, NLSDM presented initially as asymptomatic or paucisymptomatic hyperCKemia in 6/11 patients, and follow-up data showed onset of muscle weakness in 6/11 childhood-onset patients. In the adult-onset cohort, 95.1% (78/82) of patients showed muscle weakness. Cardiac involvement developed in 6/11 childhood-onset patients. Hepatomegaly was observed in 3/11 childhood-onset patients. Serum creatine kinase levels were elevated greater than five-fold of the upper limit of normal (ULN) in most childhood-onset patients and were elevated to less than ten-fold of the ULN in most adult-onset patients. Peripheral blood smears and muscle biopsies showed cytoplasmic lipid droplets in leukocytes and myocytes. NLSDM can present in children with asymptomatic or paucisymptomatic hyperCKemia before the onset of muscle weakness. The presence of lipid droplets in leucocytes (Jordans' anomaly) aids in diagnosing and confirming the pathogenicity of PNPLA2 variants of uncertain significance. There were no clear genotype-phenotype correlations in patients with NLSDM.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Adulto , Criança , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Debilidade Muscular , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética
13.
Atherosclerosis ; 377: 1-11, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343431

RESUMO

BACKGROUND AND AIMS: Vascular remodeling is a common pathological basis for cardiovascular diseases. Although both immune and non-immune cells have been suggested to contribute to this process, the complex cellular heterogeneity and intercellular interactions remain largely uncharacterized. METHODS AND RESULTS: In this study, we simulated early and late vascular remodeling by ligating the rat carotid artery for 1 week and 4 weeks, respectively. Using single-cell RNA-sequencing, we characterized gene expression signatures and driver signals of major cell types involved in vascular remodeling. Focused analysis revealed a novel sub-population of Selenbp1hi smooth muscle cells (SMCs) associated with vascular remodeling. Results of intercellular communication analyses predicted several ligand-receptor pairs between immune cells with SMCs and endothelial cells (ECs), implicating SMCs apoptosis and repair, ECs aging and inflammatory responses. CONCLUSIONS: We present a comprehensive single-cell atlas of vascular cells in early and late stages of ligated rat carotid artery, providing valuable insights into the understanding of the initiation and progression of vascular remodeling.


Assuntos
RNA , Remodelação Vascular , Ratos , Animais , Músculo Liso Vascular/metabolismo , Células Endoteliais/metabolismo , Artérias Carótidas/patologia , Miócitos de Músculo Liso/metabolismo
14.
Heliyon ; 9(12): e23001, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076131

RESUMO

Viruses have become a major threat to human health. Interferon-ß (IFN-ß) has a key role in the antivirus process, as it can increase the expression of antivirus-associated genes. Itaconate and its derivatives can regulate the immune response, secretion of inflammatory factors, and pyroptosis of macrophages. The effect of itaconate on IFN-ß secretion of double-stranded RNA-induced macrophages are not well known. A derivative of itaconate, 4-octoyl itaconate (4-OI), was used to treat mouse bone marrow-derived macrophages (BMDM) induced with 100 µg/mL poly(I:C). The IFN-ß concentration was detected through ELISA, and IFN-ß mRNA expression was detected through quantitative PCR. High-throughput transcriptome sequencing was used to analyze changes in the BMDM transcriptome after 4-OI treatment. The Nrf2 expression was knocked down with siRNA.4-OI inhibited poly(I:C)-induced IFN-ß secretion and mRNA expression in BMDM. Results of transcriptome sequencing revealed that 4-OI downregulated 1047 genes and upregulated 822 genes. GO and KEGG enrichment of differently expressed genes revealed that many downregulated genes were related to the anti-virus process, whereas many upregulated genes were related to metabolism. The Nrf2 inhibitor ML385 and Nrf2 siRNA could partially reverse the inhibitory effect of 4-OI. In conclusion, 4-octyl itaconate could inhibit the poly(I:C)-induced interferon-ß secretion in BMDM partially by regulating Nrf2.

15.
Am J Physiol Endocrinol Metab ; 302(9): E1097-112, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22338077

RESUMO

Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high-fat diets enriched with fish oil for 6 wk, we show that increasing amounts of sucrose in the diets dose-dependently increased energy efficiency and white adipose tissue (WAT) mass. Mice receiving fructose had about 50% less WAT mass than mice fed a high fish oil diet supplemented with either glucose or sucrose, indicating that the glucose moiety of sucrose was responsible for the obesity-promoting effect of sucrose. To investigate whether the obesogenic effect of sucrose and glucose was related to stimulation of insulin secretion, we combined fish oil with high and low glycemic index (GI) starches. Mice receiving the fish oil diet containing the low-GI starch had significantly less WAT than mice fed high-GI starch. Moreover, inhibition of insulin secretion by administration of nifedipine significantly reduced WAT mass in mice fed a high-fish oil diet in combination with sucrose. Our data show that the macronutrient composition of the diet modulates the effects of fish oil. Fish oil combined with sucrose, glucose, or high-GI starch promotes obesity, and the reported anti-inflammatory actions of fish oil are abrogated. In conclusion, our data indicate that glycemic control of insulin secretion modulates metabolic effects of fish oil by demonstrating that high-GI carbohydrates attenuate the antiobesity effects of fish oil.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Carboidratos da Dieta/metabolismo , Óleos de Peixe/uso terapêutico , Índice Glicêmico/fisiologia , Insulina/sangue , Obesidade/metabolismo , Animais , Fármacos Antiobesidade/metabolismo , Relação Dose-Resposta a Droga , Óleos de Peixe/metabolismo , Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Sacarose
16.
Stem Cell Res Ther ; 13(1): 224, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659360

RESUMO

BACKGROUND: Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis. METHODS: hAMSCs were transplanted into carbon tetrachloride (CCl4)-induced liver fibrosis mice via tail vein, and the effects of hAMSCs on hepatic fibrosis were assessed. The effects of hAMSCs and hAMSCs conditional medium (CM) on the activation of hepatic stellate cells (HSCs) were investigated in vivo and in vitro. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may inhibit the activation of HSCs. Finally, the underlying mechanisms were explored by assessing IGF-1R/PI3K/AKT and GSK3ß/ß-catenin signaling pathways in the activated HSCs (LX-2) with hAMSCs and hAMSCs transfected with corresponding siRNAs. RESULTS: Our results showed that hAMSCs possessed the characterizations of mesenchymal stem cells. hAMSCs significantly reduced liver fibrosis and improved liver function in mice by inhibiting HSCs activation in vivo. Both hAMSCs and hAMSC-CM remarkably inhibited the collagen deposition and activation of LX-2 cells in vitro. Antibody array assay showed that insulin-like growth factor binding protein-3 (IGFBP-3), Dickkopf-3 (DKK-3), and Dickkopf-1 (DKK-1) were highly expressed in the co-culture group and hAMSC-CM group compared with LX-2 group. Western blot assay demonstrated that IGFBP-3, DKK-3, and DKK-1 derived from hAMSCs inhibit LX-2 cell activation through blocking canonical Wnt signaling pathway. CONCLUSIONS: Our results demonstrated that IGFBP-3, Dkk3, and DKK-1 secreted by hAMSCs attenuated liver fibrosis in mice through inhibiting HSCs activation via depression of Wnt/ß-catenin signaling pathway, suggesting that hAMSCs or hAMSC-CM provides an alternative therapeutic approach for the treatment of liver fibrosis.


Assuntos
Células-Tronco Mesenquimais , Via de Sinalização Wnt , Âmnio , Animais , Células Estreladas do Fígado/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo
17.
J Agric Food Chem ; 69(11): 3390-3400, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33703896

RESUMO

Land degraded by salinization and alkalization is widely distributed globally and involves a wide range of ecosystem types. However, the knowledge of the indigenous microbial assemblages and their roles in various saline-alkaline soils is limited. This study demonstrated microbial assemblages in various saline-alkaline soils from different regions of Inner Mongolia and revealed the key driving factors to influence microbiome. The correlation network analysis indicates the difference in adaptability of bacterial and fungal communities under stimulation by saline-alkaline stress: fungal community shows higher tolerance, stability, and resilience to various saline-alkaline soils than a bacterial community. The keystone bacteria and fungi that have potential adaptability to various saline-alkaline environments are further identified, and they may confer benefits in restoring saline-alkaline soils by their own effects or assisting plants. For salt-rich soils in different regions, the soluble salt ion components are the major determinant to drive microbial assemblages of different saline-alkaline soils, rather than salinity. Thus, these saline-alkaline soils are clustered into sulfated, chlorinated, and soda-type saline-alkaline soils. Multivariate analysis reveals unique, dominant, and common microbial taxa in three saline-alkaline soils. This result of the conceptual mode indicates that potential roles of unique and dominant microbial taxa on regulating saline-alkaline functions are more vital.


Assuntos
Microbiota , Solo , China , Salinidade , Microbiologia do Solo
18.
Cell Transplant ; 16(6): 579-85, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17912949

RESUMO

Human mesenchymal stem cells (MSCs) are multipotential and are detected in bone marrow (BM), adipose tissue, placenta, and umbilical cord blood (UCB). In this study, we examined the ability of UCB-derived MSCs (UCB-MSCs) to support ex vivo expansion of hematopoietic stem/progenitor cells (HSPCs) from UCB and the engraftment of expanded HSPCs in NOD/SCID mice. The result showed that UCB-MSCs supported the proliferation and differentiation of CD34+ cells in vitro. The number of expanded total nucleated cells (TNCs) in MSC-based culture was twofold higher than cultures without MSC (control cultures). UCB-MSCs increased the expansion capabilities of CD34+ cells, long-term culture-initiating cells (LTC-ICs), granulocyte-macrophage colony-forming cells (GM-CFCs), and high proliferative potential colony-forming cells (HPP-CFCs) compared to control cultures. The expanded HSPCs were transplanted into lethally irradiated NOD/SCID mice to assess the effects of expanded cells on hematopoietic recovery. The number of white blood cells (WBCs) in the peripheral blood of mice transplanted with expanded cells from both the MSC-based and control cultures returned to pretreatment levels at day 25 posttransplant and then decreased. The WBC levels returned to pretreatment levels again at days 45-55 posttransplant. The level of human CD45+ cell engraftment in primary recipients transplanted with expanded cells from the MSC-based cultures was significantly higher than recipients transplanted with cells from the control cultures. Serial transplantation demonstrated that the expanded cells could establish long-term engraftment of hematopoietic cells. UCB-MSCs similar to those derived from adult bone marrow may provide novel targets for cellular and gene therapy.


Assuntos
Antígenos CD34/análise , Sangue Fetal/citologia , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Adulto , Animais , Proliferação de Células , Técnicas de Cocultura , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Feminino , Fatores de Crescimento de Células Hematopoéticas/farmacologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Separação Imunomagnética/classificação , Imunofenotipagem , Contagem de Leucócitos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gravidez , Quimera por Radiação , Transplante Heterólogo
19.
J Zhejiang Univ Sci B ; 8(2): 136-46, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17266190

RESUMO

This study is aimed at investigating the potentials of ex vivo expansion and pluri-differentiation of cryopreservation of adult human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes, adipocytes and neurocytes. Cryopreserved hMSCs were resuscitated and cultured for 15 passages, and then induced into chondrocytes, adipocytes and neurocytes with corresponding induction medium. The induced cells were observed for morphological properties and detected for expressions of type II collagen, triglyceride or neuron-specific enolase and nestin. The result showed that the resuscitated cells could differentiate into chondrocytes after exposure to transforming growth factor beta(1) (TGF-beta(1)), insulin-like growth factor I (IGF-I) and vitamin C (V(C)), and uniformly changed morphologically from a spindle-like fibroblastic appearance to a polygonal shape in three weeks. The induced cells were heterochromatic to safranin O and expressed cartilage matrix-procollagenal (II) mRNA. The resuscitated cells cultured in induction medium consisting of dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin and IGF-I showed adipogenesis, and lipid vacuoles accumulation was detectable after 21 d. The resuscitated hMSCs were also induced into neurocytes and expressed nestin and neuron specific endolase (NSE) that were special surface markers associated with neural cells at different stage. This study suggested that the resuscitated hMSCs should be still a population of pluripotential cells and that it could be used for establishing an abundant hMSC reservoir for further experiment and treatment of various clinical diseases.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Criopreservação/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Diferenciação Celular , Células Cultivadas , Humanos
20.
World J Gastroenterol ; 12(3): 393-402, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16489638

RESUMO

AIM: To establish a novel coculture system for ex vivo expansion of umbilical cord blood(UCB) hematopoietic progenitors using thrombopoietin (TPO)/Flt-3 ligand (FL)-transduced human marrow-derived mesenchymal stem cells (tfhMSCs) as feeder. METHODS: UCB CD34+ cells were isolated and cultured using four culture systems in serum-containing or serum-free medium. Suitable aliquots of cultured cells were used to monitor cell production, clonogenic activity, and long-term culture-initiating culture (LTC-IC) output. Finally, the severe-combined immunodeficient (SCID) mouse-repopulating cell (SRC) assay was performed to confirm ability of the cultured cells to reconstitute long-term hematopoiesis. RESULTS: There were no significant differences in the number of total nucleated cells among different culture systems in serum-containing medium during 21-d culture. However, on d 14, the outputs of CD34+ cells, CFU-C and CFU-GEMM in tfhMSCs coculture system were significantly enhanced. LTC-IC assay demonstrated that the tfhMSCs coculture system had the most powerful activity. The severe-combined immunodeficient (SCID) mouse repopulating cell (SRC) assay confirmed extensive ability of the expanded cells to reconstitute long-term hematopoiesis. Furthermore, PCR analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of NOD/SCID mice. CONCLUSION: The TPO/FL-transduced hMSCs, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro and the tfhMSCs coculture system may be a suitable system for ex vivo manipulation of primitive progenitor cells under contact culture conditions.


Assuntos
Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Técnicas de Cocultura , Sangue Fetal/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura Livres de Soro , Citocinas/metabolismo , Humanos , Imunofenotipagem , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos SCID , Trombopoetina/genética , Trombopoetina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA