Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(27): 15321-15333, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917998

RESUMO

Profenofos insecticide poses risks to nontarget organisms including mammals and hydrobionts, and its effects on crops are not known. This study examined the invisible toxicity of profenofos on pakchoi (Brassica rapa L.), using transcriptome and metabolome analyses. Profenofos inhibited the photosynthetic efficiency and light energy absorption by leaves and severely damaged the chloroplasts, causing the accumulation of reactive oxygen species (ROS). Metabolomic analysis confirmed that profenofos promoted the conversion of ß-carotene into abscisic acid (ABA), as evidenced by the upregulation of the carotenoid biosynthesis pathway genes: zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED3), and xanthoxin dehydrogenase (XanDH). The inhibitory effects on carotenoid accumulation, photosynthesis, and increased ABA and ROS contents of the leaves led to invisible injury and stunted growth of the pakchoi plants. The findings of this study revealed the toxicological risk of profenofos to nontarget crops and provide guidance for the safe use of insecticides.


Assuntos
Brassica rapa , Carotenoides , Metabolômica , Proteínas de Plantas , Brassica rapa/metabolismo , Brassica rapa/genética , Brassica rapa/química , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Transcriptoma , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Organotiofosfatos/metabolismo , Organotiofosfatos/toxicidade
2.
Polymers (Basel) ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616576

RESUMO

Polypropylene (PP) has become the most promising and candidate material for fabricating lightweight products. Microcellular injection molding (MIM) is a cost-effective technology for manufacturing porous plastic products. However, it is still challenging to fabricate high-performance PP microcellular components. Herein, we reported an efficient strategy to produce lightweight and high impact toughness foamed PP/polyethylene terephthalate (PET)/polyolefin-based elastomer (POE) components by combining in situ fibrillation (INF) and MIM technologies. First, the INF composite was prepared by integrating twin-screw compounding with melt spinning. SEM analysis showed PET nanofibrils with a diameter of 258 nm were achieved and distributed uniformly in the PP due to the POE's inducing elaboration effect. Rheological and DSC analysis demonstrated PET nanofibrils pronouncedly improved PP's viscoelasticity and crystal nucleation rate, respectively. Compared with PP foam, INF composite foam showed more stretched cells in the skin layer and refined spherical cells in the core layer. Due to the synergistic toughening effect of PET nanofibrils and POE elastic particles, the impact strength of INF composite foams was 295.3% higher than that of PP foam and 191.2% higher than that of melt-blended PP/PET foam. The results gathered in this study reveal potential applications for PP based INF composite foams in the manufacturing of lightweight automotive products with enhanced impact properties.

3.
Biology (Basel) ; 12(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979040

RESUMO

The mitochondrial genome structure of a teleostean group is generally considered to be conservative. However, two types of gene arrangements have been identified in the mitogenomes of Anguilliformes. In this study, we report the complete mitochondrial genome of Ariosoma meeki (Anguilliformes (Congridae)). For this research, first, the mitochondrial genome structure and composition were analyzed. As opposed to the typical gene arrangement pattern in other Anguilliformes species, the mitogenome of A. meeki has undergone gene rearrangement. The ND6 and the conjoint tRNA-Glu genes were translocated to the location between the tRNA-Thr and tRNA-Pro genes, and a duplicated D-loop region was translocated to move upstream of the ND6 gene. Second, comparative genomic analysis was carried out between the mitogenomes of A. meeki and Ariosoma shiroanago. The gene arrangement between them was found to be highly consistent, against the published A. meeki mitogenomes. Third, we reproduced the possible evolutionary process of gene rearrangement in Ariosoma mitogenomes and attributed such an occurrence to tandem repeat and random loss events. Fourth, a phylogenetic analysis of Anguilliformes was conducted, and the clustering results supported the non-monophyly hypothesis regarding the Congridae. This study is expected to provide a new perspective on the A. meeki mitogenome and lay the foundation for the further exploration of gene rearrangement mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA