Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318973

RESUMO

Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.


Assuntos
Deriva Genética , Passeriformes , Animais , China , Filogeografia , Florestas , Passeriformes/genética , Filogenia , Variação Genética
2.
EMBO J ; 40(22): e108065, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487377

RESUMO

The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Colesterol/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos Knockout , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Hormônios Tireóideos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Ligação a Hormônio da Tireoide
3.
Mol Cell Proteomics ; 22(4): 100525, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871861

RESUMO

Energy homeostasis of mammals during cold exposure involves complicated neural regulation and is affected by gut microbiota. However, the regulatory mechanism remains unclear partially due to a lack of comprehensive knowledge of the signaling molecules involved. Herein, we performed region-resolvable quantitative profiling of the brain peptidome using cold-exposed mouse models and interrogated the interaction between gut microbes and brain peptides in response to cold. Region-specific alterations in the brain peptidome were observed during chronic cold exposure and were correlated with gut microbiome composition. Several proSAAS-derived peptides exhibited a positive correlation with Lactobacillus. The hypothalamus-pituitary axis exhibited a sensitive response to cold exposure. We obtained a candidate pool of bioactive peptides that potentially participate in the regulation of cold-induced energy homeostasis. Intervention with cold-adapted microbiota in mice decreased the abundance of hypothalamic neurokinin B and subsequently contributed to shifting the fuel source for energy consumption from lipids to glucose. Collectively, this study demonstrated that gut microbes modulate brain peptides contributing to energy metabolism, providing a data resource for understanding the regulatory mechanism of energy homeostasis upon cold exposure.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Metabolismo Energético , Homeostase , Mamíferos
4.
J Proteome Res ; 23(7): 2505-2517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38845157

RESUMO

Escherichia coli Nissle 1917 (EcN 1917) exhibits distinct tumor-targeting activity, and early studies demonstrated that outer membrane vesicles (OMVs) mediate bacteria-host interactions. To decipher the molecular mechanism underlying the interaction between EcN 1917 and host cells via OMV-mediated communication, we investigated the phenotypic changes in Caco-2 cells perturbed by EcN 1917-derived OMVs and constructed proteomic maps of the EcN 1917-derived OMV components and OMV-perturbed host cells. Our findings revealed that the size of the EcN 1917-derived OMV proteome increased 4-fold. Treatment with EcN 1917-derived OMVs altered the proteomic and phosphoproteomic profiles of host cells. Importantly, for the first time, we found that treatment with EcN 1917-derived OMVs inhibited cancer cell migration by suppressing the expression of ANXA9. In addition, phosphoproteomic data suggested that the ErbB pathway may be involved in OMV-mediated cell migration. Taken together, our study provides valuable data for further investigations of OMV-mediated bacteria-host interactions and offers great insights into the underlying mechanism of probiotic-assisted colorectal cancer therapy.


Assuntos
Movimento Celular , Escherichia coli , Proteoma , Proteômica , Humanos , Células CACO-2 , Proteômica/métodos , Escherichia coli/metabolismo , Proteoma/análise , Proteoma/metabolismo , Membrana Externa Bacteriana/metabolismo
5.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869752

RESUMO

Song is considered to play an important role in the maintenance of prezygotic reproductive isolation between closely related songbird species. Therefore, song mixing in a contact zone between closely related species is often considered as evidence of hybridization. The Sichuan Leaf Warbler Phylloscopus forresti and the Gansu Leaf Warbler Phylloscopus kansuensis, which diverged 2 million years ago, have formed a contact zone in the south of the Gansu Province of China, where mixed songs have been observed. In this study, we investigated the potential causes and consequences of song mixing by integrating bioacoustic, morphological, mitochondrial, and genomic data with field ecological observations. We found that the two species display no apparent morphological differences, whereas their songs differ dramatically. We demonstrated that ∼11% of the males in the contact zone sang mixed songs. Two males singing mixed song were genotyped, and both were found to be P. kansuensis. Despite the presence of mixed singers, population genomic analyses detected no signs of recent gene flow between the two species, although two possible cases of mitochondrial introgression were identified. We conclude that the rather limited song mixing does not lead to, or result from, hybridization, and hence does not result in the breakdown of reproductive barriers between these cryptic species.


Assuntos
Passeriformes , Aves Canoras , Masculino , Animais , Aves Canoras/genética , Fluxo Gênico , Passeriformes/genética , Isolamento Reprodutivo , Genômica , Vocalização Animal
6.
EMBO J ; 39(12): e104133, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32347575

RESUMO

Long non-coding RNAs (lncRNAs) are emerging regulators of genomic stability and human disease. However, the molecular mechanisms by which nuclear lncRNAs directly contribute to DNA damage responses remain largely unknown. Using RNA antisense purification coupled with quantitative mass spectrometry (RAP-qMS), we found that the lncRNA BGL3 binds to PARP1 and BARD1, exhibiting unexpected roles in homologous recombination. Mechanistically, BGL3 is recruited to DNA double-strand breaks (DSBs) by PARP1 at an early time point, which requires its interaction with the DNA-binding domain of PARP1. BGL3 also binds the C-terminal BRCT domain and an internal region (amino acids 127-424) of BARD1, which mediates interaction of the BRCA1/BARD1 complex with its binding partners such as HP1γ and RAD51, resulting in BRCA1/BARD1 retention at DSBs. Cells depleted for BGL3 displayed genomic instability and were sensitive to DNA-damaging reagents. Overall, our findings underscore the biochemical versatility of RNA as a mediator molecule in the DNA damage response pathway, which affects the accumulation of BRCA1/BARD1 at DSBs.


Assuntos
Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Complexos Multiproteicos/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Células HEK293 , Humanos , Células MCF-7 , Complexos Multiproteicos/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Domínios Proteicos , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
7.
Syst Biol ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157277

RESUMO

Different genomic regions may reflect conflicting phylogenetic topologies primarily due to incomplete lineage sorting and/or gene flow. Genomic data are necessary to reconstruct the true species tree and explore potential causes of phylogenetic conflict. Here, we investigate the phylogenetic relationships of four Emberiza species (Aves: Emberizidae) and discuss the potential causes of the observed mitochondrial non-monophyly of Emberiza godlewskii (Godlewski's bunting) using phylogenomic analyses based on whole genome resequencing data from 41 birds. Analyses based on both the whole mitochondrial genome and ~39 kilobases from the non-recombining W chromosome reveal sister relationships between each the northern and southern populations of E. godlewskii with E. cioides and E. cia, respectively. In contrast, the monophyly of E. godlewskii is reflected by the phylogenetic signal of autosomal and Z chromosomal sequence data as well as demographic inference analyses, which - in combination - support the following tree topology: (((E. godlewskii, E. cia), E. cioides), E. jankowskii). Using D-statistics, we detected multiple gene flow events among different lineages, indicating pervasive introgressive hybridization within this clade. Introgression from an unsampled lineage that is sister to E. cioides or introgression from an unsampled mitochondrial + W chromosomal lineage of E. cioides into northern E. godlewskii may explain the phylogenetic conflict between the species tree estimated from genome-wide data versus mtDNA/W tree topologies. These results underscore the importance of using genomic data for phylogenetic reconstruction and species delimitation.

8.
Mol Cell Proteomics ; 21(11): 100423, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36210010

RESUMO

Organisms have developed different mechanisms to respond to stresses. However, the roles of small ORF-encoded peptides (SEPs) in these regulatory systems remain elusive, which is partially because of the lack of comprehensive knowledge regarding these biomolecules. We chose the extremophile Deinococcus radiodurans R1 as a model species and conducted large-scale profiling of the SEPs related to the stress response. The integrated workflow consisting of multiple omics approaches for SEP identification was streamlined, and an SEPome of D. radiodurans containing 109 novel and high-confidence SEPs was drafted. Forty-four percent of these SEPs were predicted to function as antimicrobial peptides. Quantitative peptidomics analysis indicated that the expression of SEP068184 was upregulated upon oxidative treatment and gamma irradiation of the bacteria. SEP068184 was conserved in Deinococcus and exhibited negative regulation of oxidative stress resistance in a comparative phenotypic assay of its mutants. Further quantitative and interactive proteomics analyses suggested that SEP068184 might function through metabolic pathways and interact with cytoplasmic proteins. Collectively, our findings demonstrate that SEPs are involved in the regulation of oxidative resistance, and the SEPome dataset provides a rich resource for research on the molecular mechanisms of the response to extreme stress in organisms.


Assuntos
Deinococcus , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Peptídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873033

RESUMO

Parallel evolution can be expected among closely related taxa exposed to similar selective pressures. However, parallelism is typically stronger at the phenotypic level, while genetic solutions to achieve these phenotypic similarities may differ. For polygenic traits, the availability of standing genetic variation (i.e., heterozygosity) may influence such genetic nonparallelism. Here, we examine the extent to which high-elevation adaptation is parallel-and whether the level of parallelism is affected by heterozygosity-by analyzing genomes of 19 Paridae species distributed across East Asia with a dramatic east-west elevation gradient. We find that western highlands endemic parids have consistently lower levels of heterozygosity-likely the result of late-Pleistocene demographic contraction-than do parids found exclusively in eastern lowlands, which remained unglaciated during the late Pleistocene. Three widespread species (east to west) have high levels of heterozygosity similar to that observed in eastern species, although their western populations are less variable than eastern ones. Comparing genomic responses to extreme environments of the Qinghai-Tibet Plateau, we find that the most differentiated genomic regions between each high-elevation taxon and its low-elevation relative are significantly enriched for genes potentially related to the oxygen transport cascade and/or thermogenesis. Despite no parallelism at particular genes, high similarity in gene function is found among comparisons. Furthermore, parallelism is not higher in more heterozygous widespread parids than in highland endemics. Thus, in East Asian parids, parallel functional response to extreme elevation appears to rely on different genes, with differences in heterozygosity having no effect on the degree of genetic parallelism.


Assuntos
Altitude , Distribuição Animal , Mudança Climática , Genômica , Aves Canoras/genética , Aves Canoras/fisiologia , Animais , Evolução Biológica , Ásia Oriental , Variação Genética , Genoma
10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753478

RESUMO

Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai-Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.


Assuntos
Aclimatação/genética , Tamanho Corporal/genética , Taxa de Mutação , Seleção Genética , Altitude , Substituição de Aminoácidos , Animais , Reparo do DNA , Proteínas Nucleares/genética , Filogenia , Especificidade da Espécie , Tibet
11.
Anal Chem ; 95(7): 3684-3693, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36757215

RESUMO

Characterization of protein arginine dimethylation presents significant challenges due to its occurrence at the substoichiometric level. To enable a targeted MS/MS analysis of these dimethylation sites, we developed the mNeuCode (methyl-neutron-coding) tag by metabolically labeling methylarginine with stable isotopes during cell culture, which generated a diagnostic peak containing the NeuCode isotopologue signature in a high-resolution MS scan. A software tool, termed NeuCodeFinder, was developed for screening the NeuCode signatures in mass spectra. Therefore, a targeted MS/MS workflow was established for proteome-wide discovery of arginine dimethylation. The efficacy and utility were demonstrated by identifying 176 arginine dimethylation sites residing on 70 proteins in HeLa cells. Among them, 38% of the sites and 29% of the dimethylated proteins are novel, including five novel arginine dimethylation sites on the protein FAM98A, which is a substrate of protein arginine methyltransferase 1 (PRMT1). Our results show that deletion of FAM98A in HeLa cells suppressed cell migration, and importantly, dimethylation-deficient mutation suppressed this process as well. Therefore, the PRMT1-FAM98A pathway mediates cell migration possibly through dimethylation of these newly identified sites of FAM98A. Our study might drive the methodological shift from shotgun-based to targeted proteome analysis for interrogation of the substoichiometric biomolecules by using NeuCode-enabled techniques.


Assuntos
Arginina , Proteoma , Humanos , Proteoma/análise , Arginina/química , Espectrometria de Massas em Tandem , Células HeLa , Software , Proteína-Arginina N-Metiltransferases/química , Proteínas Repressoras/metabolismo , Proteínas
12.
Anal Chem ; 95(19): 7702-7714, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126452

RESUMO

Mass cytometry is a powerful single-cell technology widely adopted to depict immune cell heterogeneity in different contexts. However, this method is only capable of examining several dozens of proteins simultaneously and requires a prior knowledge of the markers to be analyzed. Here we propose that the integration of mass cytometry with shot-gun proteomics may serve as a valuable tool to achieve an in-depth understanding of the immune system. By implementing such a strategy, we investigated the immune landscape of ankylosing spondylitis (AS), a chronic inflammatory arthritis with unclear etiology. The proteome alteration in peripheral blood mononuclear cells (PBMCs) was investigated by quantitative proteomics, and then mass cytometry analysis was conducted to decipher the immunome by considering the signaling molecules identified with differential expression by proteomics. As a result, we identified a wide spectrum of proteins dysregulated in AS, e.g., upregulation of glycolytic enzymes, downregulation of lipid transporters, and dysregulation of chemokine signaling molecules involved in proinflammatory cytokine production and leucocyte migration. Moreover, the single-cell analysis showed the upregulation of chemokine signaling regulators in subclusters of both innate and adaptive immune cells in AS. In addition, correlation analysis unveiled the interplay among Phenograph-identified subclusters of monocytes, CD4+ T cells, and CD8+ T cells. Taken together, our findings demonstrated that the integration of mass spectrometry-based proteomics and single-cell mass cytometry may serve as a useful tool to reveal clinically relevant information regarding useful targets and cellular phenotypes that could be further exploited to develop novel therapeutic strategies.


Assuntos
Espondilite Anquilosante , Humanos , Espondilite Anquilosante/diagnóstico , Leucócitos Mononucleares/metabolismo , Proteômica/métodos , Análise de Célula Única/métodos , Quimiocinas/metabolismo
13.
Mol Ecol ; 32(13): 3524-3540, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000417

RESUMO

Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.


Assuntos
Adaptação Fisiológica , Altitude , Passeriformes , Animais , Aclimatação/genética , Adaptação Fisiológica/genética , Passeriformes/genética , Tibet
14.
Mol Ecol ; 32(2): 381-392, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326561

RESUMO

The seasonal migration of birds is a fascinating natural wonder. Avian migratory behaviour changes are common and are probably a polygenic process as avian migration is governed by multiple correlated components with a variable genetic basis. However, the genetic and phenotypic changes involving migration changes are poorly studied. Using one annotated near-chromosomal level de novo genome assembly, 50 resequenced genomes, hundreds of morphometric data and species distribution information, we investigated population structure and genomic and phenotypic differences associated with differences in migratory behaviour in a songbird species, Yellow-throated Bunting Emberiza elegans (Aves: Emberizidae). Population genomic analyses reveal extensive gene flow between the southern resident and the northern migratory populations of this species. The hand-wing index is significantly lower in the resident populations than in the migratory populations, indicating reduced flight efficiency of the resident populations. Here, we discuss the possibility that nonmigratory populations may have originated from migratory populations though migration loss. We further infer that the alterations of genes related to energy metabolism, nervous system and circadian rhythm may have played major roles in regulating migration change. Our study sheds light on phenotypic and polygenic changes involving migration change.


Assuntos
Passeriformes , Aves Canoras , Animais , Aves Canoras/genética , Fotoperíodo , Migração Animal/fisiologia , Estações do Ano , Genômica
15.
Anal Chem ; 94(18): 6809-6818, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35485935

RESUMO

Bioactive peptides play important roles in various biological processes. However, the traditional methods for profiling the peptide-interacting proteins require modifications to the peptide molecules, often leading to false identifications. We found that the interaction between peptide ligands and protein receptors induced significant changes in the abundance of the interacting proteins, which is a signature indicating the interaction and providing complementary information for use in the classical thermal proteome profiling (TPP) technique. Herein, we developed a novel Peptide-ligand-induced Abundance Change of proTeinS (PACTS)-assisted TPP strategy for the identification of peptide-interacting proteins based on the peptide-ligand-induced change in protein abundance. The utility and efficacy of this approach were demonstrated by the identification of the interaction of the protein 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and PDPK1-interacting fragment (PIF) pair and by large-scale profiling of the interacting proteins of PIF. The PACTS-assisted TPP approach was applied to describe the interactome of amyloid beta (Aß) 1-42 in THP-1 cells and resulted in the identification of 103 interacting proteins. Validation experiments indicated that Aß1-42 interacted directly with fatty acid synthase and inhibited its enzymatic activity, providing insights into fatty acid metabolic disorders in Alzheimer's disease (AD). Overall, PACTS-assisted TPP is an efficient approach, and the newly identified Aß-interacting proteins provide rich resources for the research on AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Ligantes , Fragmentos de Peptídeos/metabolismo , Proteoma/metabolismo
16.
Syst Biol ; 70(5): 961-975, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-33787929

RESUMO

Phylogenetic trees based on genome-wide sequence data may not always represent the true evolutionary history for a variety of reasons. One process that can lead to incorrect reconstruction of species phylogenies is gene flow, especially if interspecific gene flow has affected large parts of the genome. We investigated phylogenetic relationships within a clade comprising eight species of passerine birds (Phylloscopidae, Phylloscopus, leaf warblers) using one de novo genome assembly and 78 resequenced genomes. On the basis of hypothesis-exclusion trials based on D-statistics, phylogenetic network analysis, and demographic inference analysis, we identified ancient gene flow affecting large parts of the genome between one species and the ancestral lineage of a sister species pair. This ancient gene flow consistently caused erroneous reconstruction of the phylogeny when using large amounts of genome-wide sequence data. In contrast, the true relationships were captured when smaller parts of the genome were analyzed, showing that the "winner-takes-all democratic majority tree" is not necessarily the true species tree. Under this condition, smaller amounts of data may sometimes avoid the effects of gene flow due to stochastic sampling, as hidden reticulation histories are more likely to emerge from the use of larger data sets, especially whole-genome data sets. In addition, we also found that genomic regions affected by ancient gene flow generally exhibited higher genomic differentiation but a lower recombination rate and nucleotide diversity. Our study highlights the importance of considering reticulation in phylogenetic reconstructions in the genomic era.[Bifurcation; introgression; recombination; reticulation; Phylloscopus.].


Assuntos
Fluxo Gênico , Aves Canoras , Animais , Genoma/genética , Genômica , Filogenia , Aves Canoras/genética
17.
Proc Natl Acad Sci U S A ; 116(24): 11851-11856, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31127049

RESUMO

High-altitude environments present strong stresses for living organisms, which have driven striking phenotypic and genetic adaptations. While previous studies have revealed multiple genetic adaptations in high-altitude species, how evolutionary history (i.e., phylogenetic background) contributes to similarity in genetic adaptations to high-altitude environments is largely unknown, in particular in a group of birds. We explored this in 3 high-altitude passerine birds from the Qinghai-Tibet Plateau and their low-altitude relatives in lowland eastern China. We generated transcriptomic data for 5 tissues across these species and compared sequence changes and expression shifts between high- and low-altitude pairs. Sequence comparison revealed that similarity in all 3 high-altitude species was high for genes under positive selection (218 genes) but low in amino acid substitutions (only 4 genes sharing identical amino acid substitutions). Expression profiles for all genes identified a tissue-specific expression pattern (i.e., all species clustered by tissue). By contrast, an altitude-related pattern was observed in genes differentially expressed between all 3 species pairs and genes associated with altitude, suggesting that the high-altitude environment may drive similar expression shifts in the 3 high-altitude species. Gene expression level, gene connectivity, and the interactions of these 2 factors with altitude were correlated with evolutionary rates. Our results provide evidence for how gene sequence changes and expression shifts work in a concerted way in a group of high-altitude birds, leading to similar evolution routes in response to high-altitude environmental stresses.

18.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077191

RESUMO

Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants. Here we showed that LPAT2-derived PA is important for salt and drought stress tolerance in rice. Rice LPAT2 was localized to the endoplasmic reticulum (ER) to catalyze the PA synthesis. The LPAT2 transcript was induced by osmotic stress such as high salinity and water deficit. To reveal its role in osmotic stress response, an LPAT2 knockdown mutant, designated lpat2, was isolated from rice, which contained a reduced PA level relative to wild type (WT) plants under salt stress and water deficit. The lpat2 mutant was more susceptible to osmotic stress and less sensitive to abscisic acid (ABA) than that of WT, which was recovered by either PA supplementation or genetic LPAT2 complementation. Moreover, suppressed LPAT2 also led to a large number of differentially expressed genes (DEGs) involved in diverse processes, particularly, in ABA response, kinase signaling, and ion homeostasis in response to salt stress. Together, LPAT2-produced PA plays a positive role in osmotic tolerance through mediating ABA response, which leads to transcriptional alteration of genes related to ABA response, protein kinase signaling, and ion homeostasis.


Assuntos
Oryza , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Aciltransferases , Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Água/metabolismo
19.
Mol Biol Evol ; 37(10): 2983-2988, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592485

RESUMO

The Ground Tit (Pseudopodoces humilis) has lived on the Qinghai-Tibet Plateau for ∼5.7 My and has the highest altitudinal distribution among all parids. This species has evolved an elongated beak in response to long-term selection imposed by ground-foraging and cavity-nesting habits, yet the genetic basis for beak elongation remains unknown. Here, we perform genome-wide analyses across 14 parid species and identify 25 highly divergent genomic regions that are significantly associated with beak length, finding seven candidate genes involved in bone morphogenesis and remolding. Neutrality tests indicate that a model allowing for a selective sweep in the highly conserved COL27A1 gene best explains variation in beak length. We also identify two nonsynonymous fixed mutations in the collagen domain that are predicted to be functionally deleterious yet may have facilitated beak elongation. Our study provides evidence of adaptive alleles in COL27A1 with major effects on beak elongation of Ps. humilis.


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Colágenos Fibrilares/genética , Aves Canoras/genética , Adaptação Biológica , Substituição de Aminoácidos , Animais , Genômica , Filogeografia , Seleção Genética , Aves Canoras/anatomia & histologia
20.
Ecol Lett ; 23(8): 1252-1262, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32436358

RESUMO

Understanding how biodiversity and interaction networks change across environmental gradients is a major challenge in ecology. We integrated metacommunity and metanetwork perspectives to test species' functional roles in bird-plant frugivory interactions in a fragmented forest landscape in Southwest China, with consequences for seed dispersal. Availability of fruit resources both on and under trees created vertical feeding stratification for frugivorous birds. Bird-plant interactions involving birds feeding only on-the-tree or both on and under-the-tree (shared) had a higher centrality and contributed more to metanetwork organisation than interactions involving birds feeding only under-the-tree. Moreover, bird-plant interactions associated with large-seeded plants disproportionately contributed to metanetwork organisation and centrality. Consequently, on-the-tree and shared birds contributed more to metanetwork organisation whereas under-the-tree birds were more involved in local processes. We would expect that species' roles in the metanetwork will translate into different conservation values for maintaining functioning of seed-dispersal networks.


Assuntos
Aves , Dispersão de Sementes , Animais , China , Ecossistema , Comportamento Alimentar , Frutas , Plantas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA