Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765816

RESUMO

Nucleic acids are major targets for molecular sensing because of their wide involvement in biological functions. Determining their presence, movement, and binding specificity is thus well pursued. However, many current techniques are usually sophisticated, expensive, and often lack single-nucleotide resolution. In this paper, we report the force-induced visualization method that relies on the novel concept of mechanical force to determine the functional positions of nucleic acids with single-nucleotide resolution. The use of an adjustable mechanical force overcomes the variation of analyte concentration and differences in buffer conditions that are common in biological settings. Two examples are described to validate the method: one is probing the mRNA movement during ribosomal translocation, and the other is revealing the interacting sites and strengths of DNA-binding drugs based on the force amplitude. The flexibility of the method, simplicity of the associated device, and capability of multiplexed detection will potentially enable a broad range of biomedical applications.


Assuntos
Movimento , Nucleotídeos , Humanos , RNA Mensageiro , Terapia de Relaxamento , Translocação Genética
2.
Appl Phys Lett ; 113(19): 193702, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30473584

RESUMO

Atomic magnetometry and ultrasound, as individual techniques, have been used extensively in various physical, chemical, and biomedical fields. Their combined application, however, has been rare. We report that super-resolution force spectroscopy, which is based on the integration of the two techniques, can find unique biophysical applications in studying drug-DNA interactions. The precisely controlled ultrasound generates acoustic radiation force on the biological systems labeled with magnetic microparticles. A decrease in the magnetic signal, measured by an automated atomic magnetometer, indicates that the acoustic radiation force equals the binding force of the biological system. With 0.5 pN force resolution, we were able to precisely resolve three small molecules binding with two DNA sequences and quantitatively reveal the effect of a single hydrogen bond. Our results indicate that the increases in DNA binding force caused by drug binding correlate with the enthalpy instead of free energy, thus providing an alternative physical parameter for optimizing chemotherapeutic drugs.

3.
Chem Commun (Camb) ; 54(46): 5883-5886, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29785422

RESUMO

Probing biomolecular motion beyond a single nucleotide is technically challenging but fundamentally significant. We have developed super-resolution force spectroscopy (SURFS) with 0.5 pN force resolution and revealed that the ribosome moves by half a nucleotide upon the formation of the pre-translocation complex, which is beyond the resolution of other techniques.


Assuntos
Movimento (Física) , RNA Mensageiro/química , Ribossomos/química , Sondas de DNA/química , Nucleotídeos/genética , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Conformação Proteica , Puromicina/química , RNA Mensageiro/genética , Ribossomos/genética , Espectinomicina/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Ondas Ultrassônicas
4.
Dalton Trans ; 42(32): 11576-88, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23843095

RESUMO

Three mononuclear copper complexes [Cu(PDTP)Cl2] (PDTP = 4-phenyl-2,6-di(thiazole-2-yl)pyridine, CuPDTP), [Cu(ADTP)Cl2] (ADTP = 4-(anthracen-9-yl)-2,6-di(thiazole-2-yl)pyridine, CuADTP) and [Cu(BFDTP)Cl2] (BFDTP = 4-(benzofuran-2-yl)-2,6-di(thiazole-2-yl)pyridine, CuBFDTP) were synthesized and characterized. The X-ray single crystallography results indicated that the Cu(II) ions showed slightly distorted square pyramid coordination environments, and the ligands deviated from ideal planarity in all three compounds. Based on the DNA binding studies, it was demonstrated that these three complexes exhibited weak DNA binding strengths, which were most likely groove binding modes. CuPDTP, CuADTP and CuBFDTP induced efficient DNA cleavage in the dark without the addition of external catalysts (oxidant or reductant). In contrast, in the presence of reducing or oxidizing agents, the nuclease activities increased more than 10-fold. Mechanistic investigations revealed the participation of reactive oxygen species, which can be trapped by ROS radical scavengers and ROS sensors. In the same experimental conditions, the free ligands and CuCl2 did not display any DNA cleaving activity. This result indicates that the complexes, rather than their components, play a significant role in the nuclease reaction process and that DNA cleavage may be initiated in an oxidative pattern. The proposed mechanism was attributed to the in situ activation of molecular oxygen by the oxidation of the copper complexes. In the MTT cytotoxicity studies, the three Cu(II) complexes exhibited an antitumor activity against the HeLa, BEL-7402 and HepG2 tumor cell lines. The HeLa cells treated with Cu(II) complexes demonstrated marked changes in their nuclear morphology, which were detected by Hoechst 33258 nuclear staining and acridine orange/ethidium bromide (AO/EB) staining assays. Nuclear chromatin cleavage also was observed from alkaline single-cell gel electrophoresis (comet assay).


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cobre/química , Desoxirribonucleases/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Piridinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Humanos , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Inorg Biochem ; 113: 31-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22687492

RESUMO

Two ruthenium(II) polypyridyl complexes [Ru(tpy)(ptn)](2+) (1) and Ru(dmtpy)(ptn)](2+) (2) (ptn=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]naphthalene, tpy=2,2':6',2"-terpyridine, dmtpy=5,5'-dimethyl-2,2':6',2"-terpyridine) have been synthesized and characterized by elemental analysis, (1)H NMR, mass spectrometry and crystal structure analysis. Spectroscopic studies together with isothermal titration calorimetry (ITC) and viscosity measurements prove that two complexes bind to DNA in an intercalative mode. ITC experiments show that the binding mode for complex 2 is entropically driven, while an entropy-driven initial binding of complex 1 is followed by an entropically and enthalpically favorable process. This difference may be attributed to the ancillary ligand effects on the DNA binding of Ru(II) complexes. Circular dichroism titrations of calf thymus DNA (CT-DNA) with Ru(II) complexes show that complexes 1 and 2 induce B to Z conformational transition of calf thymus DNA at low ionic strength (0.05 M NaCl). The induced Z-DNA conformation can revert to B form when Ru(II) complexes are displaced by ethidium bromide or at high ionic strengths ([NaCl]=0.4 M), but keeps intact with temperature ranged from 25 to 90 °C. The unique structure and characteristics of Ru(II) complexes designed in this investigation will be useful for the study of Z-DNA.


Assuntos
Complexos de Coordenação/síntese química , DNA de Forma B/química , DNA Forma Z/química , DNA/química , Substâncias Intercalantes/síntese química , Rutênio/química , Animais , Sítios de Ligação , Calorimetria , Bovinos , Dicroísmo Circular , Cristalografia por Raios X , Etídio/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Concentração Osmolar , Cloreto de Sódio/química , Temperatura , Termodinâmica , Viscosidade
6.
J Inorg Biochem ; 103(6): 881-90, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19375169

RESUMO

Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)2 1 and [Ru(bpy)2(nitatp)](ClO4)2 2 (bpy = 2,2'-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process.


Assuntos
DNA/química , Compostos Organometálicos/química , Fotólise , Rutênio/química , DNA/metabolismo , DNA/efeitos da radiação , Substâncias Intercalantes/química , Ligantes , Compostos Organometálicos/síntese química , Oxigênio Singlete
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA