RESUMO
Loss of estrogen receptor (ER) pathway activity promotes breast cancer progression, yet how this occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in breast cancer, represses estrogen receptor alpha (ERα) signaling by reprogramming glucose metabolism and epigenetics. Using isotope tracing and time-resolved metabolomic analyses, we demonstrate that serine is required to maintain glucose flux through glycolysis and the TCA cycle to support acetyl-CoA generation for histone acetylation. Consequently, limiting serine depletes histone H3 lysine 27 acetylation (H3K27ac), particularly at the promoter region of ER pathway genes including the gene encoding ERα, ESR1. Mechanistically, serine starvation impairs acetyl-CoA-dependent gene expression by inhibiting the entry of glycolytic carbon into the TCA cycle and down-regulating the mitochondrial citrate exporter SLC25A1, a critical enzyme in the production of nucleocytosolic acetyl-CoA from glucose. Consistent with this model, total H3K27ac and ERα expression are suppressed by SLC25A1 inhibition and restored by acetate, an alternate source of acetyl-CoA, in serine-free conditions. We thus uncover an unexpected role for serine in sustaining ER signaling through the regulation of acetyl-CoA metabolism.
Assuntos
Receptor alfa de Estrogênio , Histonas , Acetilcoenzima A , Receptor alfa de Estrogênio/genética , Histonas/genética , Receptores de Estrogênio , GlucoseRESUMO
Liquid biopsy provides a convenient and safer procedure for the diagnosis and genomic profiling of tumors that are inaccessible to biopsy by analyzing exfoliated tumor cells (ETCs) or tumor-derived cell-free DNA (cfDNA). However, its primary challenge lies in its limited accuracy in comparison to tissue-based approaches. We report a parallel single-ETC genomic sequencing (Past-Seq) method for the accurate diagnosis and genomic profiling of hard-to-biopsy tumors such as cholangiocarcinoma (CCA) and upper tract urothelial carcinoma (UTUC). For CCA, a prospective cohort of patients with suspicious biliary strictures (n = 36) was studied. Parallel single-cell whole genome sequencing and whole exome sequencing were performed on bile ETCs for CCA diagnosis and resolving mutational profiles, respectively, along with bile cfDNA sequenced for comparison. Concordant single-cell copy number alteration (CNA) profiles in multiple ETCs provided compelling evidence for generating a malignant diagnosis. Past-Seq yielded bile-based accurate CCA diagnosis (96% sensitivity, 100% specificity, and positive predictive value), surpassing pathological evaluation (56% sensitivity) and bile cfDNA CNA analysis (13% sensitivity), and generated the best performance in the retrieval tissue mutations. To further explore the applicability of Past-Seq, 10 suspicious UTUC patients were investigated with urine specimens, and Past-Seq exhibited 90% sensitivity in diagnosing UTUC, demonstrating its broad applicability across various liquid biopsies and cancer types.
Assuntos
Análise de Célula Única , Humanos , Biópsia Líquida , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Genômica , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , MutaçãoRESUMO
BACKGROUND: Deleterious BRCA1/2 (BRCA) mutation raises the risk for BRCA mutation-related malignancies, including breast, ovarian, prostate, and pancreatic cancer. Germline variation of BRCA exhibits substantial ethnical diversity. However, there is limited research on the Chinese Han population, constraining the development of strategies for BRCA mutation screening in this large ethnic group. METHODS: We profile the BRCA mutational spectrum, including single nucleotide variation, insertion/deletion, and large genomic rearrangements in 2,080 apparently healthy Chinese Han individuals and 522 patients with BRCA mutation-related cancer, to determine the BRCA genetic background of the Chinese Han population, especially of the East Han. Incident cancer events were monitored in 1,005 participants from the healthy group, comprising 11 BRCA pathogenic/likely pathogenic (PLP) variant carriers and 994 PLP-free individuals, including 3 LGR carriers. RESULTS: Healthy Chinese Han individuals demonstrated a distinct BRCA mutational spectrum compared to cancer patients, with a 0.53% (1 in 189) prevalence of pathogenic/likely pathogenic (PLP) variant, alongside a 3 in 2,080 occurrence of LGR. BRCA1 c. 5470_5477del demonstrated high prevalence (0.44%) in the North Han Chinese and penetrance for breast cancer. None of the 3 LGR carriers developed cancer during the follow-up. We calculated a relative risk of 135.55 (95% CI 25.07 to 732.88) for the development of BRCA mutation-related cancers in the BRCA PLP variant carriers (mean age 42.91 years, median follow-up 10 months) compared to PLP-free individuals (mean age 48.47 years, median follow-up 16 months). CONCLUSION: The unique BRCA mutational profile in the Chinese Han highlights the potential for standardized population-based BRCA variant screening to enhance BRCA mutation-related cancer prevention and treatment.
Assuntos
Proteína BRCA1 , Neoplasias da Mama , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Proteína BRCA2/genética , Predisposição Genética para Doença , Detecção Precoce de Câncer , China/epidemiologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , MutaçãoRESUMO
Our knowledge of the coordination of intergenerational inheritance and offspring metabolic reprogramming by gastrointestinal endocrine factors is largely unknown. Here, we showed that secretin (SCT), a brain-gut peptide, is downregulated by overnutrition in pregnant mice and women. More importantly, genetic loss of SCT in the maternal gut results in undesirable phenotypes developed in offspring including enhanced high-fat diet (HFD)-induced obesity and attenuated browning of inguinal white adipose tissue (iWAT). Mechanistically, loss of maternal SCT represses iWAT browning in offspring by a global change in genome methylation pattern through upregulation of DNMT1. SCT functions to facilitate ubiquitination and degradation of DNMT1 by activating AMPKα, which contributes to the observed alteration of DNMT1 in progeny. Lastly, we showed that SCT treatment during pregnancy can reduce the development of obesity and improve glucose tolerance and insulin resistance in offspring of HFD-fed females, suggesting that SCT may serve as a novel biomarker or a strategy for preventing metabolic diseases.
Assuntos
Resistência à Insulina , Secretina , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Gravidez , Secretina/metabolismoRESUMO
BACKGROUND: Cryotherapy is a prevalent percutaneous ablative therapy for solid tumors. Here, we report a novel device using liquid nitrogen for endoscopic cryotherapy of bladder cancer. METHODS: In this multicenter, randomized, parallel controlled, Phase 2 trial, we compared endoscopic balloon cryoablation (EBCA) with a single instillation (SI) of pirarubicin after transurethral resection (TUR). Eligible participants were randomly assigned (1:1) to the TUR-EBCA or TUR-SI group. Repeat TUR or tissue biopsies were performed to evaluate residual tumor at 4 to 6 weeks after primary treatment. The primary end point was the local control rate. The secondary end points included the tumor upgrading/upstaging, catheter indwelling duration, and adverse events. RESULTS: In total, 205 patients received EBCA or SI after TUR between November 2017 and September 2020, of whom 163 completed all the required interventions. In the per-protocol set, the local control rate was 91.5% (75/82) in TUR-EBCA group compared with 76.5% (61/81) in TUR-SI group (risk difference, 15%; 95% CI, 0.03-0.27, p < .001), meeting the criteria for noninferiority. Similar results were found in the modified intention-to-treat analysis. Tumor upgrading/upstaging was found in five patients from the TUR-SI group. There was no significant difference in the catheter indwelling duration (5.1 vs. 5.2 days, p = .76) or serious adverse event rate (3.0% vs. 3.9%, p = .52). The median follow-up time of post hoc analysis was 31 (range, 15-50) months. Patients in the TUR-EBCA group had a better recurrence-free survival and progression-free survival. CONCLUSION: EBCA is a safe and effective adjuvant therapy with TUR for non-muscle-invasive bladder cancer. PLAIN LANGUAGE SUMMARY: This is the first randomized trial that evaluated endoscopic cryotherapy after transurethral resection (TUR) of bladder tumors. The efficacy and safety analysis shows endoscopic balloon cryoablation (EBCA) is a promising alternative. Results report that EBCA is not inferior to a single instillation of intravesical chemotherapy in eliminating residual bladder tumor. Further analysis with â¼3 years' median follow-up suggested a better prognosis in patients who received EBCA after TUR.
Assuntos
Carcinoma de Células de Transição , Criocirurgia , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/patologia , Procedimentos Cirúrgicos Urológicos , Prognóstico , Administração Intravesical , Recidiva Local de Neoplasia/tratamento farmacológicoRESUMO
BACKGROUND: The clinical significance and immune correlation of CD103+ cells in prostate cancer (PCa) remain explored. METHODS: In total, 1080 patients with PCa underwent radical prostatectomy from three cohorts were enrolled for retrospective analysis. Tumour microarrays were constructed and fresh tumour samples were analysed by flow cytometry. RESULTS: High CD103+ cell infiltration correlated with reduced biochemical recurrence (BCR)-free survival in PCa. Adjuvant hormone therapy (HT) prolonged the BCR-free survival for high-risk node-negative diseases with CD103+ cell abundance. CD103+ cell infiltration correlated with less cytotoxic expression and increased infiltration of CD8+ and CD4+ T cells, M1 macrophages and mast cells in PCa. Intratumoral CD8+ T cell was the predominant source of CD103, and the CD103+ subset of CD8+ T cells was featured with high IL-10, PD-1 and CTLA-4 expression. Tumour-infiltrating CD103+ CD8+ T cells exerted anti-tumour function when treated with HT ex vivo. DISCUSSION: CD103+ cell infiltration predicted BCR-free survival and response to adjuvant HT in PCa. CD103+ cell infiltration correlated with an enriched but immune-evasive immune landscape. The study supported a model that CD103 expression conferred negative prognostic impact and immunosuppressive function to tumour-infiltrating CD8+ T cells, while the CD103+ CD8+ T cells exhibited a powerful anti-tumour immunity with response to HT.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias da Próstata , Humanos , Masculino , Cadeias alfa de Integrinas , Linfócitos do Interstício Tumoral , Prevalência , Prognóstico , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Estudos RetrospectivosRESUMO
BACKGROUND & AIMS: Disturbed hepatic metabolism frequently results in excessive lipid accumulation in the adipose tissue. However, the specific role of the liver-adipose axis in maintaining lipid homeostasis, as well as the underlying mechanism, has not yet been fully elucidated. In this study, we investigated the role of hepatic glucuronyl C5-epimerase (Glce) in the progression of obesity. METHODS: We determined the association between the expression of hepatic Glce and body mass index (BMI) in obese patients. Obesity models were established in hepatic Glce-knockout and wild-type mice fed a high-fat diet (HFD) to understand the effect of Glce on obesity development. The role of Glce in the progression of disrupted hepatokine secretion was examined via secretome analysis. RESULTS: Hepatic Glce expression was inversely correlated with BMI in obese patients. Moreover, Glce level was found to be decreased in the liver of a HFD murine model. Hepatic Glce deficiency led to impaired thermogenesis in adipose tissue and exacerbated HFD-induced obesity. Interestingly, decreased level of growth differentiation factor 15 (GDF15) was observed in the culture medium of Glce-knockout mouse hepatocytes. Treatment with recombinant GDF15 obstructed obesity progression derived from the absence of hepatic Glce, similar to the effect of Glce or its inactive mutant overexpressed both in vitro and in vivo. Furthermore, liver Glce deficiency led to diminished production and increased degradation of mature GDF15, resulting in reduced hepatic GDF15 secretion. CONCLUSIONS: Hepatic Glce deficiency facilitated obesity development, and decreased Glce expression further reduced hepatic secretion of GDF15, thereby perturbing lipid homeostasis in vivo. Therefore, the novel Glce-GDF15 axis plays an important role in maintaining energy balance and may act as a potential target for combating obesity. IMPACT AND IMPLICATIONS: Evidence suggests that GDF15 plays a key role in hepatic metabolism; however, the molecular mechanism for regulating its expression and secretion is largely unknown. Our work observes that hepatic Glce, as a key Golgi-localised epimerase, may work on the maturation and post-translational regulation of GDF15. Hepatic Glce deficiency reduces the production of mature GDF15 protein and facilitates its ubiquitination, resulting in the aggravation of obesity development. This study sheds light on the new function and mechanism of the Glce-GDF15 axis in lipid metabolism and provides a potential therapeutic target against obesity.
Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Animais , Camundongos , Dieta Hiperlipídica , Fator 15 de Diferenciação de Crescimento/metabolismo , Lipídeos , Fígado/metabolismo , Obesidade/metabolismo , Racemases e Epimerases/metabolismoRESUMO
The aim of this study was to assess the narrow-sense validity of polygenic risk score (PRS) for prostate cancer (PCa) in a Chinese prostate biopsy cohort. We performed an observational prospective study with 2640 men who underwent prostate biopsy. Germline DNA samples were genotyped and PRS was calculated for each subject using 17 PCa risk-associated genetic variants. Additional GWAS data of the ChinaPCa dataset was also used to compliment the evaluation process. The mean PRS was 1.02 in patients with negative biopsy results, which met the baseline benchmark. The mean PRS was significantly higher in the PCa cases (1.32 vs. 1.02, p = 5.56 × 10-17 ). Significant dose-response associations between PRS values and odds ratios for PCa were observed. However, the raw calibration slope was 0.524 and the average bias score between the observed risk and uncorrected PRS value was 0.307 in the entire biopsy cohort. After applying a correction factor derived from a training set, the corrected calibration slope improved to 1.002 in a testing set. Similar and satisfied results were also seen in the ChinaPCa dataset and two datasets combined, while the calibration results were inaccurate when the calibration process were performed mutually between two different study populations. In conclusion, assessing the narrow-sense validity of PRS is necessary prior to its clinical implementation for accurate individual risk assessment.
Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Biópsia , População do Leste Asiático , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Estudos Prospectivos , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Medição de Risco/métodos , Fatores de RiscoRESUMO
Circular RNAs (circRNAs) play critical roles in different diseases. Exosomes are important intermediates of intercellular communication. While both have been widely reported in cancers, exosome-derived circRNAs are rarely studied. In this work, we identified the differently expressed circRNAs in bladder cancer (BCa) tissue and exosomes through high-throughput sequencing. RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays were used to investigate the interactions between specific circRNAs, microRNAs (miRNAs), and mRNAs. Wound-healing, Transwell, Cell Counting Kit-8 (CCK8), and colony-formation assays were used to study the biological roles in vitro. Metabolomics were used to explore the mechanism of how specific circRNAs influenced BCa cell behavior. Flow cytometry was used to study how specific circRNAs affected the function of CD8+ T cells in tumor microenvironments. We identified that exosome-derived hsa_circ_0085361 (circTRPS1) was correlated with aggressive phenotypes of BCa cells via sponging miR-141-3p. Metabolomics and RNA sequencing (RNA-seq) identified GLS1-mediated glutamine metabolism was involved in circTRPS1-mediated alterations. Exosomes derived from circTRPS1 knocked down BCa cells, prevented CD8+ T cells from exhaustion, and repressed the malignant phenotype of BCa cells. In conclusion, exosome-derived circTRPS1 from BCa cells can modulate the intracellular reactive oxygen species (ROS) balance and CD8+ T cell exhaustion via the circTRPS1/miR141-3p/GLS1 axis. Our work may provide a potential biomarker and therapeutic target for BCa.
Assuntos
Exossomos , MicroRNAs , Neoplasias , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Fenótipo , RNA Circular/genética , Microambiente Tumoral/genética , Bexiga Urinária/metabolismoRESUMO
The lack of neuroprotective treatments for retinal ganglion cells (RGCs) and optic nerve (ON) is a central challenge for glaucoma management. Emerging evidence suggests that redox factor NAD+ decline is a hallmark of aging and neurodegenerative diseases. Supplementation with NAD+ precursors and overexpression of NMNAT1, the key enzyme in the NAD+ biosynthetic process, have significant neuroprotective effects. We first profile the translatomes of RGCs in naive mice and mice with silicone oil-induced ocular hypertension (SOHU)/glaucoma by RiboTag mRNA sequencing. Intriguingly, only NMNAT2, but not NMNAT1 or NMNAT3, is significantly decreased in SOHU glaucomatous RGCs, which we confirm by in situ hybridization. We next demonstrate that AAV2 intravitreal injection-mediated overexpression of long half-life NMNAT2 mutant driven by RGC-specific mouse γ-synuclein (mSncg) promoter restores decreased NAD+ levels in glaucomatous RGCs and ONs. Moreover, this RGC-specific gene therapy strategy delivers significant neuroprotection of both RGC soma and axon and preservation of visual function in the traumatic ON crush model and the SOHU glaucoma model. Collectively, our studies suggest that the weakening of NMNAT2 expression in glaucomatous RGCs contributes to a deleterious NAD+ decline, and that modulating RGC-intrinsic NMNAT2 levels by AAV2-mSncg vector is a promising gene therapy for glaucomatous neurodegeneration.
Assuntos
Glaucoma , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Modelos Animais de Doenças , Terapia Genética , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/terapia , Camundongos , NAD/metabolismo , NAD/farmacologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/farmacologia , Células Ganglionares da Retina/metabolismoRESUMO
Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations, however, coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis. The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs. Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent, carrier pH, and ion cleaning time, HFUF completely removes metal ions but retains the MCNs in suspension. The optimal conditions include using a mixture of 0.05 vol.% FL-70 and 0.5 mmol/L Na2S2O3 (pH = 8.0) as the carrier and 4 min as the ion cleaning time. At these conditions, HFUF-SP-ICP-MS accurately determines the sizes of MCNs, and the results agree with the size distribution determined by transmission electron microscopy, even when metal ions also are present in the sample. In addition, reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g., from 28.3 to 14.2 nm for gold nanoparticles). This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g., Ag+) and anions (e.g., AuCl4-) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.
Assuntos
Nanopartículas Metálicas , Ouro , Íons , Análise Espectral , UltrafiltraçãoRESUMO
Recent studies identified Midkine (MDK) as playing a key role in immune regulation. In this study, we aimed to discover the clinical significance and translational relevance in prostate cancer (PCa). We retrospectively analyzed 759 PCa patients who underwent radical prostatectomy from Huashan Hospital, Fudan University (training cohort, n = 369) and Chinese Prostate Cancer Consortium (validation cohort, n = 390). A total of 325 PCa patients from The Cancer Genome Atlas (TCGA) database (external cohort) were analyzed for exploration. Immune landscape and antitumor immunity were assessed through immunohistochemistry and flow cytometry. Patient-derived explant culture system was applied for evaluating the targeting potential of MDK. We found that intratumoral MDK expression correlated with PCa progression, which indicated an unfavorable biochemical recurrence (BCR)-free survival for postoperative PCa patients. Addition of MDK expression to the postoperative risk assessment tool CAPRA-S could improve its prognostic value. Tumors with MDK abundance characterized the tumor-infiltrating CD8+ T cells with less cytotoxicity production and increased immune checkpoint expression, which were accompanied by enriched immunosuppressive contexture. Moreover, MDK inhibition could reactivate CD8+ T cell antitumor immunity. MDK mRNA expression negatively correlated with androgen receptor activity signature and positively associated with radiotherapy-related signature. In conclusion, intratumoral MDK expression could serve as an independent prognosticator for BCR in postoperative PCa patients. MDK expression impaired the antitumor function of CD8+ T cells through orchestrating an immunoevasive microenvironment, which could be reversed by MDK inhibition. Moreover, tumors with MDK enrichment possessed potential sensitivity to postoperative radiotherapy while resistance to adjuvant hormonal therapy of PCa. MDK could be considered as a potential therapeutic target for PCa.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias da Próstata , Masculino , Humanos , Midkina , Linfócitos T CD8-Positivos/metabolismo , Estudos Retrospectivos , Prognóstico , Neoplasias da Próstata/patologia , Microambiente TumoralRESUMO
Cuproptosis is a newly discovered cell death induced by excessive copper in mitochondria distinct from any known forms of apoptosis. Role of cuproptosis has not been well-reported in cancer, especially in clear-cell renal cell carcinoma (ccRCC). We comprehensively interrogated cuproptotic gene signature in ccRCC by reproducing multi-omics datasets and found cuproptosis was decreased in ccRCC compared with normal kidney. Cuproptosis identified a subgroup with significantly better prognosis. Functional annotation supported increased tricarboxylic acid cycle activity and decreased hypoxia signaling corroborated by metabolomics. Cuproptotic tumors showed decreased angiogenesis but were sensitive to Sunitinib and Sorafenib. Cuproptotic level in ccRCC cell lines showed robust negative correlation with copper ionophore Elesclomol. All findings support a respiratory subtype of ccRCC identified by cuproptosis.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cobre , Apoptose/genética , Neoplasias Renais/metabolismo , SunitinibeRESUMO
Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of end-stage liver disease, but nowadays no pharmacological therapies are approved and there is an urgent need to develop new therapeutic targets. Glutaminase 1 (GLS1) knockdown had been put forward to alleviate NASH, but its mechanism is still unclear. Herein, to explore the exact relationship between glutamine metabolism and NASH development, we establish a NASH mice model and identified JHU-083, a proven GLS1 inhibitor, could efficiently alleviate NASH. Remarkably, JHU-083 could decrease lipid contents in the liver by enhancing fatty acid oxidation capacity considerably and transcriptomic analysis revealed JHU-083 administration could influence proline metabolism. Then we found the efficacy of JHU-083 on lipid metabolism relied on proline and when proline metabolism was blocked, GLS1 inhibitors no longer worked. Our data suggest that inhibiting glutamine hydrolysis could promote fatty acid oxidation by regulating proline metabolism, which is closely associated with NASH development and could be considered a new possible therapeutic target for NASH therapy.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Prolina/metabolismo , Camundongos Endogâmicos C57BLRESUMO
To evaluate the role of ubiquitin-conjugating enzyme E2C (UBE2C) in prostate cancer (PCa) progression and prognosis, the TCGA and our PCa tissue microarray cohort were included in the study. Weighted gene co-expression network analysis (WGCNA) and non-negative matrix factorization were used to cluster patients and to screen genes that play a vital role in PCa progression (hub gene). Immunohistochemistry staining was used to evaluate the protein level of UBE2C in prostatic tissues. Through WGCNA, we found a gene co-expression module (named the purple module) that is strongly associated with the Gleason score, pathologic T stage, and biochemical recurrent status. Genes in the purple module are enriched in cell cycle and P53 signaling and help us to cluster patients into two groups with distinctive biochemical recurrent survival rates and TP53 mutation statuses. Further analysis showed UBE2C served as a hub gene in the purple module. The expression of UBE2C in PCa was significantly higher than that in paracancerous tissues and was remarkably associated with pathologic grade, Gleason score, and prognosis in PCa patients. To conclude, UBE2C is a PCa-progress-related gene and a biomarker for PCa patients. Therapy targeting UBE2C may serve as a promising treatment of PCa in the future.
Assuntos
Neoplasias da Próstata , Enzimas de Conjugação de Ubiquitina , Humanos , Masculino , Ciclo Celular , Redes Reguladoras de Genes , Gradação de Tumores , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
PURPOSE: To investigate the safety and efficacy of ureteroscopic cryoablation by a liquid-nitrogen system in a porcine model and for patients with upper tract urothelial carcinoma (UTUC) of a solitary kidney. METHODS: In the animal experiment, the right-sided ureter was frozen in nine pigs. Eight were randomly assigned to two different groups according to the freezing duration of 60 or 90 s. The other one was designed to receive a 10-min freeze. The treated ureters were harvested at 30 min, 2 days, 4 weeks, and 3 months after cryoablation for histological evaluation. After the animal study, we conducted a pilot clinical trial that enrolled six patients who were diagnosed with UTUC of a solitary kidney and received therapeutic management with ureteroscopic cryoablation at our center. Perioperative adverse events and oncological outcomes were evaluated. RESULTS: In the porcine model, the liquid-nitrogen system was capable of forming a therapeutic ice ball which infiltrated the full-thickness ureter and induced apoptosis and necrosis from mucosa to lamina muscularis through histological examination. In the clinical trial, cryoablation was successfully performed under ureteroscopy in all the patients, without intraoperative ureteral perforation, avulsion, or active hemorrhage. No recurrence in situ was observed during a median follow-up period of 12.5 months. Hydronephrosis and ureteral stricture was observed in one patient and was managed with ureteroscopic balloon dilation. CONCLUSIONS: Ureteroscopic cryoablation induced by liquid nitrogen is a promising technique for conservative management of UTUC with benefits of improving local tumor control and preservation of a solitary kidney.
Assuntos
Carcinoma de Células de Transição , Criocirurgia , Neoplasias Renais , Rim Único , Neoplasias Ureterais , Neoplasias da Bexiga Urinária , Animais , Carcinoma de Células de Transição/cirurgia , Humanos , Neoplasias Renais/cirurgia , Recidiva Local de Neoplasia , Suínos , Neoplasias Ureterais/cirurgia , UreteroscopiaRESUMO
BACKGROUND: Muscle-invasive bladder cancer (MIBC) is one of the most important type of bladder cancer, with a high morbidity and mortality rate. Studies have found that long non-coding RNA (lncRNA) plays a key role in maintaining genomic instability. However, Identification of lncRNAs related to genomic instability (GIlncRNAs) and their clinical significance in cancers have not been extensively studied yet. METHODS: Here, we downloaded the lncRNA expression profiles, somatic mutation profiles and clinical related data in MIBC patients from The Cancer Genome Atlas (TCGA) database. A lncRNA computational framework was used to find differentially expressed GIlncRNAs. Multivariate Cox regression analysis was used to construct a genomic instability-related lncRNA signature (GIlncSig). Univariate and multivariate Cox analyses were used to assess the independent prognostic for the GIlncSig and other key clinical factors. RESULTS: We found 43 differentially expressed GIlncRNAs and constructed the GIlncSig with 6 GIlncRNAs in the training cohort. The patients were divided into two risk groups. The overall survival of patients in the high-risk group was lower than that in the low-risk group (P < 0.001), which were further verified in the testing cohort and the entire TCGA cohort. Univariate and multivariate Cox regression showed that the GIlncSig was an independent prognostic factor. In addition, the GIlncSig correlated with the genomic mutation rate of MIBC, indicating its potential as a measure of the degree of genomic instability. The GIlncSig was able to divide FGFR3 wild- and mutant-type patients into two risk groups, and effectively enhanced the prediction effect. CONCLUSION: Our study introduced an important reference for further research on the role of GIlncRNAs, and provided prognostic indicators and potential biological therapy targets for MIBC.
RESUMO
BACKGROUND: The effective treatment and prognosis prediction of bladder cancer (BLCA) remains a medical problem. Ferroptosis is an iron-dependent form of programmed cell death. Ferroptosis is closely related to tumour occurrence and progression, but the prognostic value of ferroptosis-related genes (FRGs) in BLCA remains to be further clarified. In this study, we identified an FRG signature with potential prognostic value for patients with BLCA. METHODS: The corresponding clinical data and mRNA expression profiles of BLCA patients were downloaded from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to extract FRGs related to survival time, and a Cox regression model was used to construct a multigene signature. Both principal component analysis (PCA) and single-sample gene set enrichment analysis (ssGSEA) were performed for functional annotation. RESULTS: Clinical traits were combined with FRGs, and 15 prognosis-related FRGs were identified by Cox regression. High expression of CISD1, GCLM, CRYAB, SLC7A11, TFRC, ACACA, ZEB1, SQLE, FADS2, ABCC1, G6PD and PGD was related to poor survival in BLCA patients. Multivariate Cox regression was used to construct a prognostic model with 7 FRGs that divided patients into two risk groups. Compared with that in the low-risk group, the overall survival (OS) of patients in the high-risk group was significantly lower (P < 0.001). In multivariate regression analysis, the risk score was shown to be an independent predictor of OS (HR = 1.772, P < 0.01). Receiver operating characteristic (ROC) curve analysis verified the predictive ability of the model. In addition, the two risk groups displayed different immune statuses in ssGSEA and different distributed patterns in PCA. CONCLUSION: Our research suggests that a new gene model related to ferroptosis can be applied for the prognosis prediction of BLCA. Targeting FRGs may be a treatment option for BLCA.
Assuntos
Biomarcadores Tumorais/genética , Ferroptose , Nomogramas , Neoplasias da Bexiga Urinária/mortalidade , Seguimentos , Perfilação da Expressão Gênica , Humanos , Prognóstico , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologiaRESUMO
Beige adipocytes have been considered as a potential strategy in anti-obesity therapy because of its thermogenic capacity. AMP-activated protein kinase (AMPK) plays important roles in regulating adipose tissue function. C29 is a novel pyrazolone derivative with AMPK activity. In the current study, we investigated the role of C29 in the regulation of thermogenesis using differentiated adipocytes and diet-induced obese mice, and explored the mechanisms that might be involved in energy expenditure via adipocyte AMPK activation. We showed that treatment with C29 (2.5-10 µM) concentration-dependently increased thermogenesis in differentiated preadipocytes separated from inguinal white adipose tissue (iWAT), evidenced by increased expression levels of thermogenesis markers such as Ucp1, Pgc-1α, Dio2, Prdm16, Cox7a1, Cox8b, Elovl3, and Cidea, fatty acid oxidation (FAO) genes including Cpt1a, Lcad and Pparα, as well as beige-selective genes such as Cd137, Tmem26, Slc27a1, and Tbx1. In high-fat diet (HFD)-fed mice, oral administration of C29 (30 mg·kg-1·day-1) for 9 weeks alleviated HFD-induced obesity, promoted energy expenditure and modulated iWAT browning. However, these effects were not observed in adipose-specific AMPKα1/α2 knockout (AKO) mice following C29 administration. Together, this study demonstrates that C29 regulates energy balance via adipocyte AMPK. Our findings show that the discovery of AMPK activators that specifically target adipose tissue may have therapeutic potential for treating obesity-related metabolic diseases.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Ativadores de Enzimas/uso terapêutico , Obesidade/tratamento farmacológico , Pirazolonas/uso terapêutico , Adipócitos/efeitos dos fármacos , Tecido Adiposo Bege/enzimologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/enzimologia , Obesidade/metabolismo , Termogênese/efeitos dos fármacosRESUMO
Insulin resistance is a major cause of type 2 diabetes and metabolic syndrome. Macrophage infiltration into obese adipose tissue promotes inflammatory responses that contribute to the pathogenesis of insulin resistance. Suppression of adipose tissue inflammatory responses is postulated to increase insulin sensitivity in obese patients and animals. Sarsasapogenin (ZGY) is one of the metabolites of timosaponin AIII in the gut, which has been shown to exert anti-inflammatory action. In this study, we investigated the effects of ZGY treatment on obesity-induced insulin resistance in mice. We showed that pretreatment with ZGY (80 mg·kg-1·d-1, ig, for 18 days) significantly inhibited acute adipose tissue inflammatory responses in LPS-treated mice. In high-fat diet (HFD)-fed obese mice, oral administration of ZGY (80 mg·kg-1·d-1, for 6 weeks) ameliorated insulin resistance and alleviated inflammation in adipose tissues by reducing the infiltration of macrophages. Furthermore, we demonstrated that ZGY not only directly inhibited inflammatory responses in macrophages and adipocytes, but also interrupts the crosstalk between macrophages and adipocytes in vitro, improving adipocyte insulin resistance. The insulin-sensitizing and anti-inflammatory effects of ZGY may result from inactivation of the IKK /NF-κB and JNK inflammatory signaling pathways in adipocytes. Collectively, our findings suggest that ZGY ameliorates insulin resistance and alleviates the adipose inflammatory state in HFD mice, suggesting that ZGY may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.