RESUMO
Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.
Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genéticaRESUMO
The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Animais , Betacoronavirus/química , Betacoronavirus/classificação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genômica , Humanos , Malásia , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/virologiaRESUMO
Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.
Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Camundongos , Animais , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiologia , Receptor beta de LinfotoxinaRESUMO
Fusarium graminearum is an economically important phytopathogenic fungus. Chemical control remains the dominant approach to managing this plant pathogen. In the present study, we performed a comparative transcriptome analysis to understand the effects of four commercially used fungicides on F. graminearum. The results revealed a significant number of differentially expressed genes related to carbohydrate, amino acid, and lipid metabolism, particularly in the carbendazim and phenamacril groups. Central carbon pathways, including the TCA and glyoxylate cycles, were found to play crucial roles across all treatments except tebuconazole. Weighted gene co-expression network analysis reinforced the pivotal role of central carbon pathways based on identified hub genes. Additionally, critical candidates associated with ATP-binding cassette transporters, heat shock proteins, and chitin synthases were identified. The crucial functions of the isocitrate lyase in F. graminearum were also validated. Overall, the study provided comprehensive insights into the mechanisms of how F. graminearum responds to fungicide stress.
Assuntos
Proteínas Fúngicas , Fungicidas Industriais , Fusarium , Transcriptoma , Fusarium/genética , Fusarium/metabolismo , Fungicidas Industriais/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Regulação Fúngica da Expressão Gênica , Perfilação da Expressão GênicaRESUMO
Organic core/shell heterostructures have undergone rapid progress in materials chemistry owing to the integration of a wide array of unique properties. Nonetheless, the intricate challenge of regulating homogeneous nucleation and phase separation processes in excessively analogous cocrystal structures presents a formidable barrier to expanding the synthesis strategy for organic core/shell heterostructures. Herein, we successfully achieved a phase separation growth process facilitated by the organic alloy interface layer through a dynamic visualization to capture the intricate morphological evolution. By finely regulating the nucleation process, homogeneous self-assembly induced by high chemical and structural compatibility is circumvented, enabling the formation of organic core/shell heterostructures. Notably, this core/shell architecture boasts dual-wavelength emission at 496 and 696 nm, accompanied by an optical loss coefficient of 0.092 dB per micrometer. This methodology shows potential for extending to the scalable design of other conformational cocrystal heterostructure systems, thereby offering valuable insights into the realm of organic photonics.
RESUMO
Community-acquired pneumonia (CAP) is a significant global health concern, responsible for high mortality and morbidity. Recent research has revealed a potential link between disordered microbiome and metabolism in pneumonia, although the precise relationship between these factors and severe CAP remains unclear. To address this knowledge gap, we conducted a comprehensive analysis utilizing 16S sequencing and LC-MS/MS metabolomics data to characterize the microbial profile in sputum and metabolic profile in serum in patients with severe community-acquired pneumonia (sCAP). Our analysis identified 13 genera through LEfSe analysis and 15 metabolites meeting specific criteria (P < 0.05, VIP ≥ 2, and |Log2(FC)| ≥ 2). The findings of this study demonstrate the presence of altered coordination between the microbiome of the lower respiratory tract and host metabolism in patients with sCAP. The observed concentration trends of specific metabolites across different disease stages further support the potential involvement of the serum metabolism in the development of sCAP. These correlations between the airway microbiome and host metabolism in sCAP patients have important implications for optimizing early diagnosis and developing individualized therapeutic strategies.
RESUMO
Complex organic lateral heterostructures (OLHs) with spatial distribution of two or more chemical components are crucial for designing and realizing unique structure-dependent optoelectronic applications. However, the precise design of well-defined OLHs with flexible domain regulation remains a considerable challenge. Herein, we present a stepwise solution self-assembly method to synthesize two-dimensional (2D) OLHs with a central rhombus domain and a lateral region featuring tunable blue and green emission based on the sequential nucleation and growth of 2D crystals. By controlling the initial crystallization time of 2,6-diphenylanthracene, the rhombic length ratio (α) of the multicolor-emissive part of the 2D OLHs is precisely modified. Furthermore, a third lateral layer is constructed on the resulting OLHs, demonstrating scalable lateral regulation. Significantly, these prepared 2D OLHs exhibit great excitation position-dependent waveguide characteristics and enable a 0.06 dB/µm low-loss waveguiding, which are conducive to photon transport and conversion for photonic integrated circuits. This work provides a stepwise strategy for the accurate fabrication of 2D OLHs, fabricating the developments of next-generation optoelectronics devices.
RESUMO
BACKGROUND & AIMS: The changes in HBV-specific B cells in patients with chronic hepatitis B (CHB) undergoing pegylated interferon-α (PEG-IFNα) treatment and achieving functional cure remain unclear. We aimed to evaluate the alterations in HBV-specific B cells during treatment and therefore explored the mechanism of functional recovery of HBsAg-specific B cells. METHODS: We included 39 nucleos(t)ide analogue-treated patients with CHB who received sequential combination therapy with PEG-IFNα and eight treatment-naïve patients. HBV-specific B cells were characterized ex vivo using fluorescently labeled hepatitis B surface and core antigens (HBsAg and HBcAg). The frequency, phenotype, and subsets of HBV-specific B cells and follicular helper T cells (Tfh cells) were detected using flow cytometry. The functionality of HBV-specific B cells was quantified through ELISpot assays. RESULTS: During treatment, the fraction of activated memory B cells (MBCs) among HBsAg-specific B cells and the expression of IgG, CXCR3, and CD38 increased. The antibody-secretion capacity of HBsAg-specific B cells was only restored in patients achieving a functional cure after treatment and it positively correlated with serum hepatitis B surface antibody levels. The phenotype and function of HBsAg-specific B cells differed between patients with and without functional cure. Patients with functional cure exhibited IgG+ classical MBCs and plasmablasts among HBsAg-specific B cells. HBcAg-specific B cells displayed both attenuated antibody secretion with reduced IgG expression and an IgM+ atypical type of MBC after treatment, irrespective of functional cure. The number of CD40L+ Tfh cells increased after PEG-IFNα treatment and positively correlated with HBsAg-specific B-cell activation. CONCLUSIONS: After PEG-IFNα treatment, HBsAg- and HBcAg-specific B cells exhibit various changes in antibody secretion. Their functional differences are reflected in the alterations in phenotypes and subtypes. The presence of CD40L+ Tfh cells is associated with the active recovery of HBsAg-specific B cells. IMPACT AND IMPLICATIONS: HBV-related complications and hepatocellular carcinoma remain the leading causes of mortality from chronic liver disease worldwide, and a cure is rarely achieved with antiviral therapies. Elucidating the immunological mechanisms underlying the functional cure of patients with chronic hepatitis B offers a promising therapeutic strategy for viral clearance, e.g. via therapeutic vaccination. We analyzed the alterations in HBV-specific B cells in patients treated with pegylated interferon-α and identified novel pathways for immunotherapeutic boosting of B cell immunity.
RESUMO
Multicolor luminescence of organic fluorescent materials is an essential part of lighting and optical communication. However, the conventional construction of a multicolor luminescence system based on integrating multiple organic fluorescent materials of a single emission band remains complicated and to be improved. Herein, organic alloys (OAs) capable of full-color emission are synthesized based on charge transfer (CT) cocrystals. By adjusting the molar ratio of electron donors, the emission color of the OAs can be conveniently and continuously regulated in a wide visible range from blue (CIE: 0.187, 0.277), to green (CIE: 0.301, 0.550), and to red (CIE: 0.561, 0.435). The OAs show analogous 1D morphology with smooth surface, allowing for full-color waveguides with low optical-loss coefficient. Impressively, full-color optical displays are easily achieved through the OAs system with continuous emission, which shows promising applications in the field of optical display and promotes the development of organic photonics.
RESUMO
The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages. The conditioned medium (CM) from s-STCs can promote macrophage polarization mainly toward the M1 phenotype, whose CM reciprocally accelerated further s-TSC senescence. Additional healthy tendon stem-cells derived exosomes (h-TSC-Exos) can break this positive feedback cross-talk by skewing macrophage polarization from the M1 phenotype to the M2 phenotype, attenuating s-TSCs senescence. S-TSC senescence acceleration or attenuation effects induced by M1 or M2 macrophages are associated with the inhibition or activation of the bone morphogenetic protein 4 signaling pathway following RNA sequencing analysis. Using an aged-chronic rotator cuff tear rat model, it is found that h-TSC-Exos can shift the microenvironment in the tendon-to-bone interface from a pro-inflammatory to an anti-inflammatory type at the acute postoperative stage and improve the tendon-to-bone healing results, which are associated with the rejuvenated s-TSCs. Therefore, this study proposed a potential strategy to improve the healing of aged chronic RCT.
Assuntos
Exossomos , Macrófagos , Lesões do Manguito Rotador , Células-Tronco , Tendões , Cicatrização , Exossomos/metabolismo , Animais , Macrófagos/metabolismo , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/metabolismo , Tendões/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Ratos , Manguito Rotador/patologia , Masculino , Senescência Celular , Osso e Ossos , Ratos Sprague-Dawley , HumanosRESUMO
The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.
Assuntos
Genoma Viral , Filogenia , Infecções Respiratórias , Humanos , China/epidemiologia , Genoma Viral/genética , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Sistema Respiratório/virologia , Pré-Escolar , Adulto , Criança , RNA Viral/genética , Pessoa de Meia-IdadeRESUMO
Over the past few decades, research on the chemistry of gold has progressed rapidly, encompassing topics like catalysis, supramolecular chemistry, molecular recognition, etc. These chemical properties are of great value in developing therapeutics or orthogonal catalysts in biology. However, the presence of concentrated nucleophiles and reductants, particularly thiol-containing serum albumin in blood and glutathione (GSH) inside cells that can strongly bind and quench the active gold species, makes it difficult to translate the chemistry of gold from test tubes into living systems. In this regard, modulating the chemical reactivity of gold complexes to conquer nonspecific interactions with thiols and meanwhile to controllably activate their reactivity in a spatiotemporal manner is of pivotal importance to develop gold complexes for biomedical applications. In this account, we aim to highlight the concept of developing stimuli-activatable gold complexes with masked chemical properties, the bioactivity of which can be spatiotemporally activated at the target site by leveraging approaches from classic structure design to recently emerged photo- and bioorthogonal-activation.A straightforward approach to tuning the reactivity of gold complexes is based on structure modification. This is achieved by introducing strong carbon donor ligands, such as N-heterocyclic carbene, alkynyl, and diphosphine, to improve the stability of gold(I) complexes against off-target thiols. Likewise, GSH-responsive gold(III) prodrug and supramolecular Au(I)-Au(I) interaction have been harnessed to keep a reasonable stability against serum albumin and confer tumor-targeted cytotoxicity by inhibiting thiol- and selenol-containing thioredoxin reductase (TrxR) for potent cancer treatment in vivo. To achieve better spatiotemporal controllability, photoactivatable prodrugs are developed. These complexes are equipped with cyclometalated pincer-type ligands and carbanion or hydride as ancillary ligands, rendering high thiol-stability in the dark, but upon photoirradiation, the complexes can undergo unprecedented photoinduced ligand substitution, ß-hydride elimination, and/or reduction to release active gold species for TrxR inhibition at the diseased tissue. To further improve the therapeutic activity, an oxygen-dependent conditional photoreactivity of gold(III) complexes by evolving from photodynamic into photoactivated chemotherapy has been achieved, resulting in highly potent antitumor efficacy in tumor-bearing mice. Of equal importance is harnessing the bioorthogonal activation approach by chemical inducers, as exemplified by a palladium-triggered transmetalation reaction to selectively activate the chemical reactivities of gold including its TrxR inhibition and catalytic activity in living cells and zebrafish. Collectively, strategies to modulate gold chemistry in vitro and in vivo are emerging, and it is hoped that this Account will spur the creation of better approaches to advance gold complexes closer to clinical application.
Assuntos
Antineoplásicos , Complexos de Coordenação , Camundongos , Animais , Ouro/química , Linhagem Celular Tumoral , Antineoplásicos/química , Ligantes , Peixe-Zebra/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Compostos de Sulfidrila , Complexos de Coordenação/químicaRESUMO
BACKGROUND: Cystic Fibrosis causing mutations in the gene CFTR, reduce the activity of the CFTR channel protein, and leads to mucus aggregation, airway obstruction and poor lung function. A role for CFTR in the pathogenesis of other muco-obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD) has been well established. The CFTR modulatory compound, Ivacaftor (VX-770), potentiates channel activity of CFTR and certain CF-causing mutations and has been shown to ameliorate mucus obstruction and improve lung function in people harbouring these CF-causing mutations. A pilot trial of Ivacaftor supported its potential efficacy for the treatment of mucus obstruction in COPD. These findings prompted the search for CFTR potentiators that are more effective in ameliorating cigarette-smoke (CS) induced mucostasis. METHODS: Small molecule potentiators, previously identified in CFTR binding studies, were tested for activity in augmenting CFTR channel activity using patch clamp electrophysiology in HEK-293 cells, a fluorescence-based assay of membrane potential in Calu-3 cells and in Ussing chamber studies of primary bronchial epithelial cultures. Addition of cigarette smoke extract (CSE) to the solutions bathing the apical surface of Calu-3 cells and primary bronchial airway cultures was used to model COPD. Confocal studies of the velocity of fluorescent microsphere movement on the apical surface of CSE exposed airway epithelial cultures, were used to assess the effect of potentiators on CFTR-mediated mucociliary movement. RESULTS: We showed that SK-POT1, like VX-770, was effective in augmenting the cyclic AMP-dependent channel activity of CFTR. SK-POT-1 enhanced CFTR channel activity in airway epithelial cells previously exposed to CSE and ameliorated mucostasis on the surface of primary airway cultures. CONCLUSION: Together, this evidence supports the further development of SK-POT1 as an intervention in the treatment of COPD.
Assuntos
Aminofenóis , Brônquios , Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais , Quinolonas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Quinolonas/farmacologia , Aminofenóis/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Fumaça/efeitos adversos , Células Cultivadas , Células HEK293 , Agonistas dos Canais de Cloreto/farmacologia , Agonistas dos Canais de Cloreto/uso terapêutico , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismoRESUMO
BACKGROUND: Clear cell likelihood score (ccLS) is reliable for diagnosing small renal masses (SRMs). However, the diagnostic value of Clear cell likelihood score version 1.0 (ccLS v1.0) and v2.0 for common subtypes of SRMs might be a potential score extension. PURPOSE: To compare the diagnostic performance and interobserver agreement of ccLS v1.0 and v2.0 for characterizing five common subtypes of SRMs. STUDY TYPE: Retrospective. POPULATION: 797 patients (563 males, 234 females; mean age, 53 ± 12 years) with 867 histologically proven renal masses. FIELD STRENGTH/SEQUENCES: 3.0 and 1.5 T/T2 weighted imaging, T1 weighted imaging, diffusion-weighted imaging, a dual-echo chemical shift (in- and opposed-phase) T1 weighted imaging, multiphase dynamic contrast-enhanced imaging. ASSESSMENT: Six abdominal radiologists were trained in the ccLS algorithm and independently scored each SRM using ccLS v1.0 and v2.0, respectively. All SRMs had definite pathological results. The pooled area under curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the diagnostic performance of ccLS v1.0 and v2.0 for characterizing common subtypes of SRMs. The average κ values were calculated to evaluate the interobserver agreement of the two scoring versions. STATISTICAL TESTS: Random-effects logistic regression; Receiver operating characteristic analysis; DeLong test; Weighted Kappa test; Z test. The statistical significance level was P < 0.05. RESULTS: The pooled AUCs of clear cell likelihood score version 2.0 (ccLS v2.0) were statistically superior to those of ccLS v1.0 for diagnosing clear cell renal cell carcinoma (ccRCC) (0.907 vs. 0.851), papillary renal cell carcinoma (pRCC) (0.926 vs. 0.888), renal oncocytoma (RO) (0.745 vs. 0.679), and angiomyolipoma without visible fat (AMLwvf) (0.826 vs. 0.766). Interobserver agreement for SRMs between ccLS v1.0 and v2.0 is comparable and was not statistically significant (P = 0.993). CONCLUSION: The diagnostic performance of ccLS v2.0 surpasses that of ccLS v1.0 for characterizing ccRCC, pRCC, RO, and AMLwvf. Especially, the standardized algorithm has optimal performance for ccRCC and pRCC. ccLS has potential as a supportive clinical tool. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.
RESUMO
Ethylene response factors have been shown to be involved in the effects of plant developmental processes and to regulate stress tolerance. The aim of this study was to recognize the regulatory mechanisms of ethylene response factors on tobacco plant height. In this study, a gene-edited mutant (ERF10-KO) and wild type (WT) were utilized as experimental materials. Transcriptome and metabolome analyses were used to investigate the regulatory mechanism of NtERF10 gene editing on plant height in tobacco. Here, through the analysis of differentially expressed genes (DEGs), 2051 genes were upregulated and 1965 genes were downregulated. We characterized the different ERF10-KO and WT plant heights and identified key genes for photosynthesis, the plant hormone signal transduction pathway and the terpene biosynthesis pathway. NtERF10 was found to affect the growth and development of tobacco by regulating the expression levels of the PSAA, PSBA, GLY17 and GGP3 genes. Amino acid metabolism was analyzed by combining analyses of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). In addition, we found that members of the bHLH, NAC, MYB, and WRKY transcription factor families have vital roles in regulating plant height. This study not only provides important insights into the positive regulation of the ethylene response factor NtERF10 on plant height during plant growth and development but also provides new research ideas for tobacco molecular breeding.
Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Fatores de Transcrição , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Etilenos/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , TranscriptomaRESUMO
Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.
Assuntos
Antibacterianos , Anti-Inflamatórios , Antioxidantes , Quitosana , Ácido Gálico , Hidrogéis , Metacrilatos , Quitosana/química , Ácido Gálico/química , Ácido Gálico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Camundongos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Metacrilatos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células RAW 264.7 , Reagentes de Ligações Cruzadas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismoRESUMO
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , MicroRNAs/genética , Oncogenes , Regulação Neoplásica da Expressão Gênica , Microambiente TumoralRESUMO
Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: ⢠Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. ⢠Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. ⢠A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.
Assuntos
Hialuronoglucosaminidase , Resposta a Proteínas não Dobradas , Animais , Humanos , Hialuronoglucosaminidase/genética , Transporte Proteico , Retículo EndoplasmáticoRESUMO
BACKGROUND: Community-Acquired Pneumonia (CAP) remains a significant global health concern, with a subset of cases progressing to Severe Community-Acquired Pneumonia (SCAP). This study aims to develop and validate a CT-based radiomics model for the early detection of SCAP to enable timely intervention and improve patient outcomes. METHODS: A retrospective study was conducted on 115 CAP and SCAP patients at Southern Medical University Shunde Hospital from January to December 2021. Using the Pyradiomics package, 107 radiomic features were extracted from CT scans, refined via intra-class and inter-class correlation coefficients, and narrowed down using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The predictive performance of the radiomics-based model was assessed through receiver operating characteristic (ROC) analysis, employing machine learning classifiers such as k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF), trained and validated on datasets split 7:3, with a training set (n = 80) and a validation set (n = 35). RESULTS: The radiomics model exhibited robust predictive performance, with the RF classifier achieving superior precision and accuracy compared to LR, SVM, and KNN classifiers. Specifically, the RF classifier demonstrated a precision of 0.977 (training set) and 0.833 (validation set), as well as an accuracy of 0.925 (training set) and 0.857 (validation set), suggesting its superior performance in both metrics. Decision Curve Analysis (DCA) was utilized to evaluate the clinical efficacy of the RF classifier, demonstrating a favorable net benefit within the threshold ranges of 0.1 to 0.8 for the training set and 0.2 to 0.7 for the validation set. CONCLUSIONS: The radiomics model developed in this study shows promise for early SCAP detection and can improve clinical decision-making.
Assuntos
Infecções Comunitárias Adquiridas , Diagnóstico Precoce , Pneumonia , Tomografia Computadorizada por Raios X , Humanos , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Feminino , Masculino , Pneumonia/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Aprendizado de Máquina , Curva ROC , Máquina de Vetores de Suporte , Índice de Gravidade de Doença , RadiômicaRESUMO
Insulinoma-associated protein 1 (INSM1), a recently identified neuroendocrine marker, is a transcriptional regulator with highly conserved INSM1 homologues in various species. This study investigated the immunohistochemical reactivity of the INSM1 antibody in 20 normal canine neuroendocrine tissues from various anatomical locations, 87 hyperplastic or neoplastic tissues of neuroendocrine origin, and 62 non-neuroendocrine neoplasms and compared the results with those of chromogranin A and synaptophysin in neuroendocrine neoplasms. Western blot was performed on fresh canine pituitary glands and canine parathyroid glands to confirm the specificity of the anti-INSM1 antibody. The results showed that the anti-INSM1 antibody could detect nuclear expression in normal canine neuroendocrine tissues, except for the parathyroid glands. INSM1 was detectable in 79/87 (91%) of the hyperplastic and neoplastic neuroendocrine lesions, but all parathyroid carcinomas and parathyroid adenomas (three samples each) were negative for INSM1. In contrast, INSM1 was detected in only one of 62 (2%) non-neuroendocrine neoplasms. The overall percentage of neuroendocrine neoplasms that immunolabeled positively for all three markers was 89%. In addition, the nuclear expression of INSM1 was easier to interpret than that of chromogranin A or synaptophysin. These findings confirm that INSM1 is a useful immunohistochemical marker for diagnosing canine neuroendocrine neoplasms, except for parathyroid neoplasms, and should be considered as part of immunohistochemistry panels to improve diagnostic capability.