RESUMO
Transcriptomic analysis across species is increasingly used to reveal conserved gene regulations which implicate crucial regulators. Cross-species analysis of single-cell RNA sequencing (scRNA-seq) data provides new opportunities to identify the cellular and molecular conservations, especially for cell types and cell type-specific gene regulations. However, few methods have been developed to analyze cross-species scRNA-seq data to uncover both molecular and cellular conservations. Here, we built a tool called CACIMAR, which can perform cross-species analysis of cell identities, markers, regulations, and interactions using scRNA-seq profiles. Based on the weighted sum models of the conserved features, we developed different conservation scores to measure the conservation of cell types, regulatory networks, and intercellular interactions. Using publicly available scRNA-seq data on retinal regeneration in mice, zebrafish, and chick, we demonstrated four main functions of CACIMAR. First, CACIMAR allows to identify conserved cell types even in evolutionarily distant species. Second, the tool facilitates the identification of evolutionarily conserved or species-specific marker genes. Third, CACIMAR enables the identification of conserved intracellular regulations, including cell type-specific regulatory subnetworks and regulators. Lastly, CACIMAR provides a unique feature for identifying conserved intercellular interactions. Overall, CACIMAR facilitates the identification of evolutionarily conserved cell types, marker genes, intracellular regulations, and intercellular interactions, providing insights into the cellular and molecular mechanisms of species evolution.
Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Peixe-Zebra , Animais , Análise de Célula Única/métodos , Camundongos , Peixe-Zebra/genética , Análise de Sequência de RNA/métodos , Especificidade da Espécie , Software , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Galinhas , Biomarcadores/metabolismo , Biologia Computacional/métodos , Regulação da Expressão GênicaRESUMO
BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Although high-dose chemotherapy is the primary treatment option, it cannot cure the disease, and new approaches need to be developed. The tumor microenvironment (TME) plays a crucial role in tumor biology and immunotherapy. CD8 + T cells are the main anti-tumor immune effector cells, and it is essential to understand their relationship with the TME and the clinicopathological characteristics of AML. METHODS: In this study, we conducted a systematic analysis of CD8 + T cell infiltration through multi-omics data and identified molecular subtypes with significant differences in CD8 + T cell infiltration and prognosis. We aimed to provide a comprehensive evaluation of the pathological factors affecting the prognosis of AML patients and to offer theoretical support for the precise treatment of AML. RESULTS: Our results indicate that CD8 + T cell infiltration is accompanied by immunosuppression, and that there are two molecular subtypes, with the C2 subtype having a significantly worse prognosis than the C1 subtype, as well as less CD8 + T cell infiltration. We developed a signature to distinguish molecular subtypes using multiple machine learning algorithms and validated the prognostic predictive power of molecular subtypes in nine AML cohorts including 2059 AML patients. Our findings suggest that there are different immunosuppressive characteristics between the two subtypes. The C1 subtype has up-regulated expression of immune checkpoints such as CTLA4, PD-1, LAG3, and TIGITD, while the C2 subtype infiltrates more immunosuppressive cells such as Tregs and M2 macrophages. The C1 subtype is more responsive to anti-PD-1 immunotherapy and induction chemotherapy, as well as having higher immune and cancer-promoting variant-related pathway activity. Patients with the C2 subtype had a higher FLT3 mutation rate, higher WBC counts, and a higher percentage of blasts, as indicated by increased activity of signaling pathways involved in energy metabolism and cell proliferation. Analysis of data from ex vivo AML cell drug assays has identified a group of drugs that differ in therapeutic sensitivity between molecular subtypes. CONCLUSIONS: Our results suggest that the molecular subtypes we constructed have potential application value in the prognosis evaluation and treatment guidance of AML patients.
Assuntos
Relevância Clínica , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linfócitos T CD8-Positivos , Terapia de Imunossupressão , Imunoterapia , Imunossupressores , Prognóstico , Microambiente TumoralRESUMO
MOTIVATION: Intercellular communication (i.e. cell-cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell-cell communication based on gene expression datasets, these methods often predict one-directional ligand-receptor interactions from sender to receiver cells and are not suitable to identify feedback loops. RESULTS: Here, we describe ligand-receptor loop (LRLoop), a new method for analyzing cell-cell communication based on bi-directional ligand-receptor interactions, where two pairs of ligand-receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand-receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification. AVAILABILITY AND IMPLEMENTATION: An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Projetos de Pesquisa , Software , Retroalimentação , Ligantes , Comunicação CelularRESUMO
BACKGROUND: Alternative splicing (AS) of RNA is a fundamental biological process that shapes protein diversity. Many non-characteristic AS events are involved in the onset and development of acute myeloid leukemia (AML). Abnormal alterations in splicing factors (SFs), which regulate the onset of AS events, affect the process of splicing regulation. Hence, it is important to explore the relationship between SFs and the clinical features and biological processes of patients with AML. METHODS: This study focused on SFs of the classical heterogeneous nuclear ribonucleoprotein (hnRNP) family and arginine and serine/arginine-rich (SR) splicing factor family. We explored the relationship between the regulation patterns associated with the expression of SFs and clinicopathological factors and biological behaviors of AML based on a multi-omics approach. The biological functions of SRSF10 in AML were further analyzed using clinical samples and in vitro experiments. RESULTS: Most SFs were upregulated in AML samples and were associated with poor prognosis. The four splicing regulation patterns were characterized by differences in immune function, tumor mutation, signaling pathway activity, prognosis, and predicted response to chemotherapy and immunotherapy. A risk score model was constructed and validated as an independent prognostic factor for AML. Overall survival was significantly shorter in the high-risk score group. In addition, we confirmed that SRSF10 expression was significantly up-regulated in clinical samples of AML, and knockdown of SRSF10 inhibited the proliferation of AML cells and promoted apoptosis and G1 phase arrest during the cell cycle. CONCLUSION: The analysis of splicing regulation patterns can help us better understand the differences in the tumor microenvironment of patients with AML and guide clinical decision-making and prognosis prediction. SRSF10 can be a potential therapeutic target and biomarker for AML.
Assuntos
Leucemia Mieloide Aguda , Splicing de RNA , Humanos , Fatores de Processamento de RNA , Processamento Alternativo/genética , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Arginina/genética , Arginina/metabolismo , Microambiente Tumoral , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/genética , Proteínas de Ciclo Celular/genéticaRESUMO
Chronic myeloid leukemia (CML) is a hematological tumor derived from hematopoietic stem cells. The aim of this study is to analyze the biological characteristics and identify the diagnostic markers of CML. We obtained the expression profiles from the Gene Expression Omnibus (GEO) database and identified 210 differentially expressed genes (DEGs) between CML and normal samples. These DEGs are mainly enriched in immune-related pathways such as Th1 and Th2 cell differentiation, primary immunodeficiency, T cell receptor signaling pathway, antigen processing and presentation pathways. Based on these DEGs, we identified two molecular subtypes using a consensus clustering algorithm. Cluster A was an immunosuppressive phenotype with reduced immune cell infiltration and significant activation of metabolism-related pathways such as reactive oxygen species, glycolysis and mTORC1; Cluster B was an immune activating phenotype with increased infiltration of CD4 + and CD8 + T cells and NK cells, and increased activation of signaling pathways such as interferon gamma (IFN-γ) response, IL6-JAK-STAT3 and inflammatory response. Drug prediction results showed that patients in Cluster B had a higher therapeutic response to anti-PD-1 and anti-CTLA4 and were more sensitive to imatinib, nilotinib and dasatinib. Support Vector Machine Recursive Feature Elimination (SVM-RFE), Least Absolute Shrinkage Selection Operator (LASSO) and Random Forest (RF) algorithms identified 4 CML diagnostic genes (HDC, SMPDL3A, IRF4 and AQP3), and the risk score model constructed by these genes improved the diagnostic accuracy. We further validated the diagnostic value of the 4 genes and the risk score model in a clinical cohort, and the risk score can be used in the differential diagnosis of CML and other hematological malignancies. The risk score can also be used to identify molecular subtypes and predict response to imatinib treatment. These results reveal the characteristics of immunosuppression and metabolic reprogramming in CML patients, and the identification of molecular subtypes and biomarkers provides new ideas and insights for the clinical diagnosis and treatment.
RESUMO
BACKGROUND: Acute myeloid leukemia (AML) is the most common malignancy of the hematological system, and there are currently a number of studies regarding abnormal alterations in energy metabolism, but fewer reports related to fatty acid metabolism (FAM) in AML. We therefore analyze the association of FAM and AML tumor development to explore targets for clinical prognosis prediction and identify those with potential therapeutic value. METHODS: The identification of AML patients with different fatty acid metabolism characteristics was based on a consensus clustering algorithm. The CIBERSORT algorithm was used to calculate the proportion of infiltrating immune cells. We used Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis to construct a signature for predicting the prognosis of AML patients. The Genomics of Drug Sensitivity in Cancer database was used to predict the sensitivity of patient samples in high- and low-risk score groups to different chemotherapy drugs. RESULTS: The consensus clustering approach identified three molecular subtypes of FAM that exhibited significant differences in genomic features such as immunity, metabolism, and inflammation, as well as patient prognosis. The risk-score model we constructed accurately predicted patient outcomes, with area under the receiver operating characteristic curve values of 0.870, 0.878, and 0.950 at 1, 3, and 5 years, respectively. The validation cohort also confirmed the prognostic evaluation performance of the risk score. In addition, higher risk scores were associated with stronger fatty acid metabolisms, significantly higher expression levels of immune checkpoints, and significantly increased infiltration of immunosuppressive cells. Immune functions, such as inflammation promotion, para-inflammation, and type I/II interferon responses, were also significantly activated. These results demonstrated that immunotherapy targeting immune checkpoints and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) and M2 macrophages, are more suitable for patients with high-risk scores. Finally, the prediction results of chemotherapeutic drugs showed that samples in the high-risk score group had greater treatment sensitivity to four chemotherapy drugs in vitro. CONCLUSIONS: The analysis of the molecular patterns of FAM effectively predicted patient prognosis and revealed various tumor microenvironment (TME) characteristics.
Assuntos
Leucemia Mieloide Aguda , Microambiente Tumoral , Ácidos Graxos , Humanos , Inflamação , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , Microambiente Tumoral/genéticaRESUMO
Toll-like receptors (TLRs) are important pattern recognition receptors (PRRs) of innate immune system, playing crucial roles in immune defense against pathogens. TLR18, a member of TLR1 family, is fish-specific TLR and involves in the immune response against bacterial infection. Currently, the structural biology of fish TLR18 is poorly elaborated. In this study, the structure and ligand binding of TLR18 (smTLR18) of soiny mullet (Liza haematocheila), an economically valuable aquaculture mugilid species, were analyzed. The extracellular domain (ECD) of smTLR18 formed an open-loop horseshoe-shaped structure with the concave surfaces made up of 19 parallel ß-strands (LRR1-LRR19), lacking Z-loop that seen in human TLR9. The intracellular Toll/interleukin (IL)-1 (TIR) domain contained a central 4-parallel ß-sheet (ßA-ßD) surrounded by 5 α-helices (αA-αE). Molecular docking analysis revealed that both ECD domain and TIR domain of smTLR18 could form homodimers. For the ECD homodimer, the main residues involved in dimer formation were located from LRR10 to LRR14. For the TIR homodimer, the residues involved in dimer formation were located in BB loop, αB helix, αC helix and DD loop. Ligand binding analyses revealed that peptidoglycans (PGNs) and lipopolysaccharides (LPS), two main bacterial pathogen-associated molecular patterns (PAMPs), were the potential ligands of smTLR18. The van der Waals and Coulombic interactions contributed to the interactions between smTLR18 and PGNs, while only van der Waals dominated the interactions between smTLR18 and LPS. The residues involved in ligands binding were located from LRR9 to LRR13. Our results provided the structural bases for elucidate the ligand binding of fish TLR18.
Assuntos
Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Ligantes , Lipopolissacarídeos/efeitos adversos , Simulação de Acoplamento Molecular , Peptidoglicano/efeitos adversos , Domínios Proteicos , Alinhamento de Sequência/veterinária , Transdução de Sinais/imunologia , Receptores Toll-Like/químicaRESUMO
Understanding the molecular mechanisms underlying genetic diseases is challenging due to environmental and genetic factors. Genome-wide association studies (GWAS) have identified numerous genetic loci, but their functional implications are largely unknown. Single-cell multiomics sequencing has emerged as a powerful tool to study disease-specific cell types and their relationship with genetic variants. However, comprehensive databases for exploring these mechanisms across different tissues are lacking. We present the Disease-Related Cell Type database (DRCTdb), integrating GWAS and single-cell multiomics data to identify disease-related cell types and elucidate their regulatory mechanisms. DRCTdb contains well-processed data from 16 studies, covering 4 million cells within 28 tissues. Users can browse relationships and regulatory mechanisms between SNPs of 42 genetic diseases and cell types based on GWAS and single-cell data. DRCTdb also offers data downloads and is available at https://singlecellatlas.top/DRCTDB .
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Bases de Dados Genéticas , Predisposição Genética para DoençaRESUMO
BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.
Assuntos
Alphainfluenzavirus , Medicamentos de Ervas Chinesas , Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Pneumonia/tratamento farmacológico , Pneumonia/genética , Inflamação , Biologia de Sistemas , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Colorectal cancer (CRC) remains a global health concern with persistently high incidence and mortality rates. However, the specific pathogenesis of CRC remains poorly understood. This study aims to investigate the role and pathogenesis of serine and arginine rich splicing factor 10 (SRSF10) in colorectal cancer. METHODS: Bioinformatics analysis was employed to predict SRSF10 gene expression in CRC patients. Functional experiments involving SRSF10 knockdown and overexpression were conducted using CCK8, transwell, scratch assay, and flow cytometry. Additionally, the PRIdictor website was utilized to predict the SRSF10 interaction site with RFC5. The identification of different transcripts of SRSF10-acting RFC5 pre-mRNA was achieved through agarose gel electrophoresis. RESULT: The knockdown of SRSF10 inhibited the proliferation and migration ability of CRC cells, while promoting apoptosis and altering the DNA replication of CRC cells. Conversely, when SRSF10 was highly expressed, it enhanced the proliferation and migration ability of CRC cells and caused changes in the cell cycle of colorectal cancer cells. This study revealed a change in the replicating factor C subunit 5 (RFC5) gene in colorectal cancer cells following SRSF10 knockdown. Furthermore, it was confirmed that SRSF10 increased RFC5 exon2-AS1(S) transcription variants, thereby promoting the development of colorectal cancer through AS1 exclusion to exon 2 of RFC5. CONCLUSION: In summary, this study demonstrates that SRSF10 promotes the progression of colorectal cancer by generating an aberrantly spliced exclusion isoform of AS1 within RFC5 exon 2. These findings suggest that SRSF10 could serve as a crucial target for the clinical diagnosis and treatment of CRC.
Assuntos
Processamento Alternativo , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteína de Replicação C , Fatores de Processamento de Serina-Arginina , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Apoptose/genética , Linhagem Celular Tumoral , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Repressoras , Proteínas de Ciclo CelularRESUMO
BACKGROUND: Necroptosis is an inflammatory cell death mode, and its association with multiple myeloma (MM) remains unclear. METHODS: This prospective study first analyzed the association between necroptosis-related signature as well as prognosis and chemotherapy sensitivity in MM using the necroptosis score. Consensus clustering was used to identify necroptosis-related molecular clusters. Least absolute shrinkage and selection operator analysis and multivariate Cox regression analysis were performed to establish the prognostic model of necroptosis-related genes (NRGs). RESULTS: A high necroptosis score was associated with poor prognosis and abundant immune infiltration. Two molecular clusters (clusters A and B) significantly differed in terms of prognosis and tumor microenvironment. Cluster B had a worse prognosis and higher tumor marker pathway activity than cluster A. The risk score model based on four NRGs can accurately predict the prognosis of patients with MM, which was validated in two validation cohorts. Receiver operating characteristic curve analysis showed that the area under the curves of the risk score in predicting the 1-, 3-, and 5-year survival rates were 0.710, 0.758, and 0.834, respectively. Further, the activity of pathways related to proliferation and genetic regulation in the high-risk group significantly increased. The drug prediction results showed that the low-risk score group was more sensitive to bortezomib, cytarabine, and doxorubicin than the high-risk score group. Meanwhile, the high-risk score group was more sensitive to lenalidomide and vinblastine than the low-risk score group. Finally, the upregulation of model genes CHMP1A, FAS, JAK3, and HSP90AA1 in clinical samples collected from patients with MM was validated via real-time polymerase chain reaction. CONCLUSION: A systematic analysis of NRGs can help identify potential necroptosis-related mechanisms and provide novel biomarkers for MM prognosis prediction, tumor microenvironment evaluation, and personalized treatment planning.
Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Necroptose , Estudos Prospectivos , Prognóstico , Bortezomib/farmacologia , Microambiente Tumoral/genéticaRESUMO
Introduction: Asian citrus psyllid (ACP, Diaphorina citri) is an important transmission vector of "Candidatus Liberibacter asiaticus" (CLas), the causal agent of Huanglongbing (HLB), the most destructive citrus disease in the world. As there are currently no HLB-resistant rootstocks or varieties, the control of ACP is an important way to prevent HLB. Some viruses of insect vectors can be used as genetically engineered materials to control insect vectors. Methods: To gain knowledge on viruses in ACP in China, the prevalence of five RNA and DNA viruses was successfully determined by optimizing reverse transcription polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-associated viruses were identified as follows: diaphorina citri bunyavirus 2, which was newly identified by high-throughput sequencing in our lab, diaphorina citri reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV). Results: DcPLV was the most prevalent and widespread ACP-associated virus, followed by DcBV, and it was detected in more than 50% of all samples tested. DcPLV was also demonstrated to propagate vertically and found more in salivary glands among different tissues. Approximately 60% of all adult insect samples were co-infected with more than one insect pathogen, including the five ACP-associated viruses and CLas. Discussion: This is the first time these viruses, including the newly identified ACP-associated virus, have been detected in individual adult ACPs from natural populations in China's five major citrus-producing provinces. These results provide valuable information about the prevalence of ACP-associated viruses in China, some of which have the potential to be used as biocontrol agents. In addition, analysis of the change in prevalence of pathogens in a single insect vector is the basis for understanding the interactions between CLas, ACP, and insect viruses.
RESUMO
OBJECTIVE: The primary objective of this study is to investigate the prevalence and risk factors of stroke in high-altitude areas through a comprehensive systematic review and meta-analysis. DESIGN: This study adopts a systematic review and meta-analysis design. DATA SOURCES: A thorough search was conducted on databases including PubMed, Web of Science, Embase, Cochrane Library, MEDLINE and SCOPUS, covering the period up to June 2023. ELIGIBILITY CRITERIA: Studies reporting the prevalence of stroke in high-altitude areas and exploring related risk factors were included, regardless of whether they involved clinical samples or the general population. Studies with incomplete, outdated or duplicate data were excluded. DATA EXTRACTION AND SYNTHESIS: We performed eligibility screening, data extraction and quality evaluation of the retrieved articles. Meta-analysis was employed to estimate the prevalence and risk factors of stroke in high-altitude areas. The Newcastle-Ottawa Scale was used to assess the risk of bias. RESULTS: A total of 17 studies encompassing 8 566 042 participants from four continents were included, with altitudes ranging from 1500 m to nearly 5000 m. The pooled prevalence of stroke in high-altitude areas was found to be 0.5% (95% CI 0.3%-7%). Notably, the prevalence was higher in clinical samples (1.2%; 0.4%-2.5%) compared with the general population (0.3%; 95% CI 0.1%-0.6%). When considering geographic regions, the aggregated data indicated that stroke prevalence in the Eurasia plate was 0.3% (0.2%-0.4%), while in the American region, it was 0.8% (0.4%-1.3%). Age (OR, 14.891), gender (OR, 1.289), hypertension (OR, 3.158) and obesity (OR, 1.502) were identified as significant risk factors for stroke in high-altitude areas. CONCLUSIONS: The findings of this study provide insights into the pooled prevalence of stroke in high-altitude areas, highlighting variations based on geographic regions and sampling type. Moreover, age, gender, hypertension and obesity were found to be associated with the occurrence of stroke. PROSPERO REGISTRATION NUMBER: CRD42022381541.
Assuntos
Hipertensão , Acidente Vascular Cerebral , Humanos , Altitude , Prevalência , Fatores de Risco , Obesidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologiaRESUMO
OBJECTIVES: Chronic myeloid leukemia (CML) is an aggressive malignancy originating from hematopoietic stem cells. Imatinib (IM), the first-generation tyrosine kinase inhibitor, has greatly improved theliving quality of CML patients. However, owing to the recurrence and treatment failure coming from tyrosine kinase inhibitor (TKIs) resistance, some CML patients still bear poor prognosis. Therefore, we aimed to seek potential signaling pathways and specific biomarkers for imatinib resistance. METHODS: We performed mRNA and miRNA expression profiling in imatinib-sensitive K562 cells (IS-K562) and imatinib-resistant K562 cells (IR-K562). Differentially expressed genes (DEGs) were identified and pathway enrichment analyses were performed to explore the potential mechanism. The protein-protein interaction (PPI) network and miRNA-mRNA regulatory network were constructed to explore potential relationships among these genes. RT-qPCR, western blot and CCK8 were used for further experiments. RESULTS: A total of 623 DEGs and 61 differentially expressed miRNAs were identified. GO revealed that DEGs were mainly involved in cell adhesion, cell migration, differentiation, and inflammatory response. KEGG revealed that DEGs were typically enriched in the Rap1 signaling pathway, focal adhesion, proteoglycans and transcriptional misregulation in cancer, signaling pathways regulating pluripotency of stem cells and some immune-related pathways. The protein-protein interaction (PPI) network and miRNA-mRNA regulatory network revealed a web of diverse connections among genes. Finally, we proved that RHoGDI2 played a critical role in imatinib resistance. CONCLUSION: The dynamic interplay between genes and signaling pathways is associated with TKIs resistance and RHoGDI2 is identified as a biomarker in IR-K562.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Inibidor beta de Dissociação do Nucleotídeo Guanina rho , Células K562 , MicroRNAs/genética , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Biomarcadores , Biologia ComputacionalRESUMO
BACKGROUND: This study aims to assess and compare the functional outcomes of patients with acute ischemic stroke (AIS) eligible for tissue plasminogen activator (t-PA) treatment who received care from either a fifth-generation(5G) mobile stroke unit (MSU) or traditional emergency medical service (EMS). METHOD: The study recruited patients between February 2020 and January 2022, with the final 90-day follow-up concluded in April 2022. Prior to enrollment, patients were assigned to either EMS or MSU care based on predetermined rules. The primary outcome measure was the Modified Rankin Scale (mRS) score at 90 days, with secondary outcome measures including time metrics, mRS and National Institutes of Health Stroke Scale scores at 7-day follow-up, and hospitalization costs. RESULTS: Of the 2281 enrolled patients, 207 were eligible for t-PA treatment, with 101 allocated to MSU care and 106 to EMS care. The percentage of patients achieving a favorable mRS score (0-2) at 90 days was 82.2% in the MSU group compared to 72.6% in the EMS group (p < .05). Median times from symptom onset to thrombolysis were 146 min in the MSU group and 204 min in the EMS group, while median times from ambulance alert to computed tomography (CT) completion were 53 and 128 min, respectively. Hospitalization charges averaged approximately $3592 in the MSU group and $4800 in the EMS group. CONCLUSIONS: Our findings indicate that 5G MSU care significantly reduces the time from symptom onset to stroke diagnosis and intravenous thrombolysis in patients with AIS, resulting in improved functional outcomes compared to EMS care. As China continues its deployment of 5G technology and other digital infrastructures, the adoption of 5G MSU care on a broader scale may eventually supplant traditional stroke treatment approaches.
Assuntos
Isquemia Encefálica , Serviços Médicos de Emergência , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/tratamento farmacológico , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do TratamentoRESUMO
Background: Disulfidptosis is a metabolically relevant mode of cell death, and its relationship with acute myeloid leukemia (AML) has not been clarified. In this study, disulfidptosis scores were computed to examine the potential biological mechanisms. Methods: Consensus clustering was applied to detect disulfidptosis-related molecular subtypes. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a DRG prognostic model. Results: DRGs are upregulated in AML and associated with poor prognosis. The higher the disulfidptosis activity score, the worse the clinical outcome for patients, accompanied by increased immune checkpoint expression and tumor marker pathway activity. The two molecular subtypes exhibited distinct prognoses and tumor microenvironment (TME) profiles. A prognostic risk score model was established using six DRGs, and the AML cohort was divided into high- and low-risk score groups. Patients in the high-risk group experienced significantly worse prognosis, which was validated in seven AML cohorts. Receiver Operating Characteristic (ROC) curve analysis indicated that the area under the curve values for risk score prediction of 1-, 3-, and 5-year survival were 0.779, 0.714, and 0.778, respectively. The nomogram, in conjunction with clinicopathological factors, further improved the accuracy of prognosis prediction. The high-risk score group exhibited a higher somatic mutation frequency, increased immune-related signaling pathway activity, and greater immune checkpoint expression, suggesting a certain degree of immunosuppression. Patients with advanced age and higher cytogenetic risk also had elevated risk scores. According to drug prediction and AML anti-PD-1 therapy cohort analysis, the low-risk score group displayed greater sensitivity to chemotherapy drugs like cytarabine and midostaurin, while the high-risk score group was more responsive to anti-PD-1 therapy. Finally, clinical samples were collected for sequencing analysis, confirming that the progression of myeloid leukemia was associated with a higher risk score and a negative disulfidptosis score, suggesting that the poor prognosis of AML may be associated with disulfidptosis resistance. Conclusion: In conclusion, a systematic analysis of DRGs can help to identify potential disulfidptosis-related mechanisms and provide effective new biomarkers for prognosis prediction, TME assessment, and the establishment of personalized treatment plans in AML.
RESUMO
C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 µg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 µg/mL (701.40 ± 21.51 µg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
Assuntos
Carotenoides , Halorubrum , Carotenoides/metabolismo , Halorubrum/química , Halorubrum/metabolismo , Fermentação , Sais , Meios de Cultura/químicaRESUMO
Recently, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) have been developed to separately measure transcriptomes and chromatin accessibility profiles at the single-cell resolution. However, few methods can reliably integrate these data to perform regulatory network analysis. Here, we developed integrated regulatory network analysis (IReNA) for network inference through the integrated analysis of scRNA-seq and scATAC-seq data, network modularization, transcription factor enrichment, and construction of simplified intermodular regulatory networks. Using public datasets, we showed that integrated network analysis of scRNA-seq data with scATAC-seq data is more precise to identify known regulators than scRNA-seq data analysis alone. Moreover, IReNA outperformed currently available methods in identifying known regulators. IReNA facilitates the systems-level understanding of biological regulatory mechanisms and is available at https://github.com/jiang-junyao/IReNA.
RESUMO
OBJECTIVE: To evaluate the susceptibility of pulmonary tuberculosis based on the single nucleotide polymorphism (SNP) of Toll like receptor 4 (TLR4) gene. METHODS: We searched PubMed, Web of science, EMBASE, and Chinese National Knowledge Infrastructure (CNKI) databases using mesh words: "tuberculosis", "pulmonary", "TLR4", "SNP", "Toll like receptor 4", "nucleotide polymorphism" for studies on the relations between TLR4 SNP polymorphism and the risk of pulmonary tuberculosis that were published before September 1st, 2021. Papers were selected according to the inclusion and exclusion criteria established in advance. The allele and genotype data of the four most widely studied SNP loci (rs4986791, rs4986790, rs11536889, rs10759932) in TLR4 gene were extracted and analyzed by Review Manager 5.3 software. RESULTS: 20 studies including a total of 24727 patients were included in the final meta-analysis. Results of the meta-analysis showed that the C allele of rs10759932 increased the risk of pulmonary tuberculosis (odds ratio - OR: 1.144; 95% confidence interval (CI) 1.043-1.254, P = 0.004). Compared with TT genotype, CC+CT genotype of rs10759932 and CT alone genotype significantly increased the risk of pulmonary tuberculosis (OR = 1.218, 95% CI 1.084-1.369, P = 0.001; OR = 1.227, 95% CI 1.085-1.387, P = 0.001). However, rs4986790, rs4986791 and rs11536889 had no significant correlation with the susceptibility of pulmonary tuberculosis (P > 0.05). CONCLUSION: G allele GG+GA genotype, and the GA genotype of rs4986790; C allele, CC+CT genotype, and the CC genotype of rs10759932 increased the risk of pulmonary tuberculosis, and may potentially be used as a marker for pulmonary tuberculosis diagnosis and monitoring.
RESUMO
Objective: To find a preoperative computed tomography-based method to predict the incidence of sacral screw loosening and assist surgical planning. Methods: Surgically treated patients for degenerative lumbosacral disorders with rigid pedicle screw fixation of patients with L5-S1 vertebra in our center from January 2016 to January 2021 were retrospectively included in the current study. CT scan attenuation of the horizontal plane of the sacrum was measured with Hounsfield units (HU). Postoperative X-ray tests were used to diagnose screw loosening. The data was analyzed by independent sample t-tests, X 2 analysis, Pearson correlation analysis, and ROC curve analysis. Results: A total of 162 (114 male, 48 female, average age 63.7 ± 7.3 years) patients were included in the final analysis. Significant differences were found between the screw loosening group and nonloosening group concerning the HU value of the sacrum at the horizontal plane (P < 0.01). In ROC curve analysis, AUC was 0.674 (95% CI: 0.592-0.756). A cutoff of 200 HU provided 64.8% sensitivity and 62.4% specificity, and a cutoff of 150 HU provided 90.2% sensitivity. Conclusions: Analyzing 162 patients with at least 12 months of follow-up, we propose cutoff CT attenuation values of 200 HU and 150 HU to take moderate and radical measures of screw augmentation to prevent screw loosening in the sacral bone.