Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(17): 12043-9, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27067120

RESUMO

Elucidating the decay mechanisms of photoexcited charge carriers is key to improving the efficiency of solar cells based on organo-lead halide perovskites. Here we investigate the spectral dependence (via above-, inter- and sub-bandgap optical excitations) of direct and trap-mediated decay processes in CH3NH3PbI3 using time resolved microwave conductivity (TRMC). We find that the total end-of-pulse mobility is excitation wavelength dependent - the mobility is maximized (172 cm(2) V(-1) s(-1)) when charge carriers are excited by near bandgap light (780 nm) in the low charge carrier density regime (10(9) photons per cm(2)), and is lower for above- and sub-bandgap excitations. Direct recombination is found to occur on the 100-400 ns timescale across excitation wavelengths near and above the bandgap, whereas indirect recombination processes displayed distinct behaviour following above- and sub-bandgap excitations, suggesting the influence of different trap distributions on recombination dynamics.

2.
J Phys Chem Lett ; 10(16): 4675-4682, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31328525

RESUMO

Chemical doping is a ubiquitously applied strategy to improve the charge-transfer and conductivity characteristics of spiro-OMeTAD, a hole-transporting material (HTM) used widely in solution-processed perovskite solar cells (PSCs). Cobalt(III) complexes are commonly employed HTM dopants, whose major role is to oxidize spiro-OMeTAD to provide p-doping for improved conductivity. The present work discloses additional, previously unknown important functions of cobalt complexes in the HTM films that influence the photovoltaic performance. Specifically, it is demonstrated that commercial p-dopant FK269 (bis(2,6-di(1H-pyrazol-1-yl)pyridine) cobalt(III) tris(bis(trifluoromethylsulfonyl)imide)) reduces the interfacial recombination and alleviates the decomposition of the perovskite layer under the action of tert-butylpyridine and lithium bis(trifluoromethanesulfonyl)imide. These effects are demonstrated for 1 cm2 perovskite solar cells that achieve a stabilized power conversion efficiency of 19% under 1 sun irradiation.

3.
Chempluschem ; 83(7): 711-720, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31950629

RESUMO

Design of novel efficient light-harvesters for p-type dye-sensitised solar cells (DSSCs) is indispensable for further advances in this photovoltaic technology. Herein, a novel D-π-A (D=donor, π=π-conjugated linker, A=acceptor) sensitiser, ZnP1, featuring an electron acceptor, perylenemonoimide (PMI), connected to an electron donor, di(p-carboxyphenyl)amine (DCPA), through fluorene and a zinc(II) porphyrin with alkyl chains as a π-conjugated bridge is introduced. Spectroscopic and electrochemical characterisation of this dye along with a newly synthesised PMI-free reference dye ZnP0 has been undertaken to demonstrate strong electron coupling between the DCPA donor and PMI acceptor subunits through the porphyrin ring in ZnP1, which redshifts the light absorption onset to the near-IR region. When integrated into p-DSSCs based on a mesoporous nickel(II) oxide semiconductor electrode and a tris(acetylacetonato) iron(III/II) redox mediator, ZnP1 exhibits an onset of the incident photon-to-current conversion efficiency at 800 nm and a power conversion efficiency of up to 0.92 % under simulated 100 mW cm-2 AM 1.5 G irradiation. This is the highest efficiency of the porphyrin-based p-DSSCs hitherto reported.

4.
Chempluschem ; 83(7): 547, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31950639

RESUMO

Invited for this month's cover are the groups of Prof. Dr. Udo Bach, Prof. Dr. Yi-Bing Cheng, and Prof. Dr. Leone Spiccia (Monash University, Australia), and Dr. Mingkui Wang (Huazhong University of Science and Technology, China). The cover picture shows the charge-transfer processes between a novel porphyrin dye adsorbed on nickel oxide and tris(acetylacetonato) iron(III/II) redox mediator after excitation by sunlight. Read the full text of the article at 10.1002/cplu.201800104.

5.
ChemSusChem ; 10(19): 3810-3817, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28857493

RESUMO

Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al2 O3 underlayer for perovskite solar cells. The thickness of the Al2 O3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al2 O3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al2 O3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al2 O3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al2 O3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al2 O3 underlayers for flexible solar cells.


Assuntos
Óxido de Alumínio/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química
6.
Nanoscale ; 8(12): 6258-64, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26508593

RESUMO

Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

7.
ACS Nano ; 10(7): 7031-8, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27386731

RESUMO

Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

8.
J Phys Chem Lett ; 6(19): 3931-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26722894

RESUMO

In this work, the use of a high bandgap perovskite solar cell in a spectrum splitting system is demonstrated. A remarkable energy conversion efficiency of 23.4% is achieved when a CH3NH3PbBr3 solar cell is coupled with a 22.7% efficient silicon passivated emitter rear locally diffused solar cell. Relative enhancements of >10% are demonstrated by CH3NH3PbBr3/CH3NH3PbI3 and CH3NH3PbBr3/multicrystalline-screen-printed-Si spectral splitting systems with tandem efficiencies of 13.4% and 18.8%, respectively. The former is the first demonstration of an all perovskite split spectrum system. The CH3NH3PbBr3 cell on a mesoporous structure was fabricated by the vapor-assisted method while the planar CH3NH3PbI3 cell was fabricated by the gas-assisted method. This work demonstrates the advantage of the higher voltage output from the high bandgap CH3NH3PbBr3 cell and its suitability in a tandem system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA