Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D413-D420, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34570220

RESUMO

LncRNAs are not only well-known as non-coding elements, but also serve as templates for peptide translation, playing important roles in fundamental cellular processes and diseases. Here, we describe a database, TransLnc (http://bio-bigdata.hrbmu.edu.cn/TransLnc/), which aims to provide comprehensive experimentally supported and predicted lncRNA peptides in multiple species. TransLnc currently documents approximate 583 840 peptides encoded by 33 094 lncRNAs. Six types of direct and indirect evidences supporting the coding potential of lncRNAs were integrated, and 65.28% peptides entries were with at least one type of evidence. Considering the strong tissue-specific expression of lncRNAs, TransLnc allows users to access lncRNA peptides in any of the 34 tissues involved in. In addition, both the unique characteristic and homology relationship were also predicted and provided. Importantly, TransLnc provides computationally predicted tumour neoantigens from peptides encoded by lncRNAs, which would provide novel insights into cancer immunotherapy. There were 220 791 and 237 915 candidate neoantigens binding by major histocompatibility complex (MHC) class I or II molecules, respectively. Several flexible tools were developed to aid retrieve and analyse, particularly lncRNAs tissue expression patterns, clinical relevance across cancer types. TransLnc will serve as a valuable resource for investigating the translation capacity of lncRNAs and greatly extends the cancer immunopeptidome.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , Peptídeos/genética , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Software , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Sítios de Ligação , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunoterapia/métodos , Internet , Camundongos , Anotação de Sequência Molecular , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos , Peptídeos/classificação , Peptídeos/imunologia , Ligação Proteica , RNA Longo não Codificante/classificação , RNA Longo não Codificante/imunologia , Ratos
2.
Dalton Trans ; 53(23): 9844-9851, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804874

RESUMO

Photocatalytic hydrogen (H2) evolution can effectively solve the global energy problem, in which the key factor is the synthesis of efficient photocatalytic materials. In this study, we successfully synthesized a novel photocatalyst, BiWCo/CuS/PGCN, by functionalizing porous graphitic carbon nitride (PGCN) with sandwich-type polyoxometalate Na3.5Co4[Bi2Co2W19.75O70(H2O)6]·39.5H2O (BiWCo) and introducing copper sulfide (CuS) nanoparticles as a cocatalyst. This approach was aimed at enhancing the built inner electric field between interfaces, resulting in a significant improvement in photocatalytic H2 evolution performance. This research adopts a step-by-step method to synthesize BiWCo/CuS/PGCN composites with p-n heterojunctions, which has high visible light absorption and a synergistic effect of multiple elements. PGCN with a high specific surface area contributes to the uniform distribution of active sites. In addition, the nano-CuS cocatalyst provides abundant active sites and more electron transfer pathways for photocatalysis. Therefore, the H2 production efficiency of BiWCo/CuS/PGCN is 6.3 times that of PGCN, 4.5 times that of BiWCo and 2.5 times that of BiWCo/PGCN under visible light. The H2 production rate of BiWCo/CuS/PGCN reaches 3477.58 µmol g-1 h-1. At the same time, the ternary photocatalyst shows high stability after 30 hours and 5 cycles. This work demonstrates that BiWCo/CuS/PGCN has good application prospects in H2 evolution, and provides a new strategy for the design of efficient ternary photocatalytic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA