Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cryobiology ; 114: 104838, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38097057

RESUMO

Hibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage. Time course stage transition-based (TOR vs. PRE, IBA vs. TOR, POST vs. IBA) differential expression analysis was performed based on the R limma package. A total of 14 co-differential metabolites were detected. Among these, l-cystathionine, l-proline, ketoleucine, serine, and 1-Hydroxy-3,6,7-Trimethoxy-2, 8-Diprenylxanthone demonstrated the highest levels in the TOR stage; Beta-Nicotinamide adenine dinucleotide, Dihydrozeatin, Pannaric acid, and Propionylcarnitine demonstrated the highest levels in the IBA stage; Adrenosterone, PS (18:0/14,15-EpETE), S-Carboxymethylcysteine, TxB2, and 3-Phenoxybenzylalcohol demonstrated the highest levels in the POST stage. Kyoto Encyclopedia of Genes and Genomes pathways annotation analysis indicated that biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism were co-differential metabolism pathways during the different stages of hibernation. The stage-specific metabolism processes and integrated enzyme-centered metabolism networks in the different stages were also deciphered. Overall, our findings suggest that (1) the periodic change of proline, ketoleucine, and serine contributes to the hindlimb lean tissue preservation; and (2) key metabolites related to the biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism may be associated with muscle atrophy resistance. In conclusion, our co-differential metabolites, co-differential metabolism pathways, stage-specific metabolism pathways, and integrated enzyme-centered metabolism networks are informative for biologists to generate hypotheses for functional analyses to perturb disuse-induced muscle atrophy.


Assuntos
Hibernação , Cetoácidos , Músculo Esquelético , Animais , Músculo Esquelético/metabolismo , Sciuridae/metabolismo , Proteômica , Cisteína/metabolismo , Criopreservação/métodos , Atrofia Muscular/metabolismo , Hibernação/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Serina/metabolismo , Metionina/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39097140

RESUMO

Muscle and bone are cooperatively preserved in Daurian ground squirrels (Spermophilus dauricus) during hibernation. As such, we hypothesized that IGF-1 and myostatin may contribute to musculoskeletal maintenance during this period. Thus, we systematically assessed changes in the protein expression levels of IGF-1 and myostatin, as well as their corresponding downstream targets, in the vastus medialis (VM) muscle and femur in Daurian ground squirrels during different stages. Group differences were determined using one-way analysis of variance (ANOVA). Results indicated that the co-localization levels of IGF-1 and its receptor (IGF-1R) increased by 50% during the pre-hibernation period (PRE) and by 35% during re-entry into torpor (RET) compared to the summer active period (SA). The phosphorylation level of FOXO1 in the VM muscle increased by 50% in the torpor (TOR) group and by 82% in the inter-bout arousal (IBA) group compared to the PRE group. The phosphorylation level of SGK-1 increased by 54% in the IBA group and by 62% in the RET group compared to the SA group. In contrast, the protein expression of IGF-1 and phosphorylation levels of PI3K, Akt, mTOR, and GSK3ß in the VM muscle showed no obvious differences among the different groups. ß-catenin protein expression was up-regulated by 84% in the RET group compared to the SA group, while the content of IGF-1 protein, correlation coefficients of IGF-1 and IGF-1R, and phosphorylation levels of PI3K, Akt, and GSK3ß in the femur showed no significant differences among groups. Regarding myostatin and its downstream targets, myostatin protein expression decreased by 70% in the RET group compared to the SA group, whereas ActRIIB protein expression and Smad2/3 phosphorylation in the VM muscle showed no obvious differences among groups. Furthermore, Smad2/3 phosphorylation decreased by 58% in the TOR group and 53% in the RET group compared to the SA group, whereas ActRIIB protein expression in the femur showed no obvious differences among groups. Overall, the observed changes in IGF-1 and myostatin expression and their downstream targets may be involved in musculoskeletal preservation during hibernation in Daurian ground squirrels.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36280225

RESUMO

Hibernating Spermophilus dauricus is resistant to muscle atrophy. Comprehensive transcriptome and proteome time-course analyses based on Metascape can further reveal the underlying processes (pre-hibernation stage, PRE; torpor stage, TOR; interbout arousal stage, IBA; and post-hibernation stage, POST). Transcriptome analysis showed that the cellular responses to growth factor stimulus and discrete oxygen levels continuously changed during hibernation. Proteomic analysis showed that neutrophil degranulation, sulfur compound metabolic process, and generation of precursor metabolites and energy continuously changed during hibernation. Molecular complex detection (MCODE) analysis in both transcriptome and proteome indicated that smooth muscle contraction was involved in the POST versus IBA stage, and peroxisome proliferator-activated receptor delta (Ppard), Myc proto-oncogene (Myc), Sp1 transcription factor (Sp1), and nuclear factor Kappa B subunit 1 (NFκB1) are the common TFs during the hibernation process. Integrated transcriptome and proteome analyses found 18 molecules in the TOR versus PRE stage, 1 molecule in the IBA versus TOR stage, and 16 molecules in the POST versus IBA stage. Among these molecules, carnitine palmitoyltransferase 1A (Cpt1a), SET and MYND domain containing 2 (Smyd2), four and a half LIM domains 1(Fhl1), reactive oxygen species modulator 1 (Romo1), and translocase of the inner mitochondrial membrane 50 (Timm50) were testified by Western blot. In conclusion, novel muscle atrophy resistance mechanisms can be deciphered by time-course transcriptome and proteome analyses based on Metascape.


Assuntos
Hibernação , Sciuridae , Animais , Sciuridae/fisiologia , Transcriptoma , Proteômica , Proteoma/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Hibernação/fisiologia
4.
BMC Genomics ; 23(1): 695, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207684

RESUMO

BACKGROUND: Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC­E1 pre­osteoblast cells. RESULTS: In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes. CONCLUSION: This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC­E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.


Assuntos
Aterosclerose , MicroRNAs , RNA Longo não Codificante , Actinas/genética , Actinas/metabolismo , Proliferação de Células/genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Osteoblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína Supressora de Tumor p53/genética
5.
Mol Biol Rep ; 49(8): 8037-8049, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35428929

RESUMO

INTRODUCTION: As a post-translational modification, glycosylation plays vital role in regulating the folding and function of proteins necessary for many biological processes. Unlike glycation, glycosylation is an enzymatic process; glycosyltransferases transfer sugars to proteins, forming glycosidic bonds with amino acid residues on proteins. Changes that interfere with the enzymatic reaction and result in abnormal glycosylation can spatio-temporally affect the balance of glycosylation, leading to disease states. Muscle diseases have been associated with dysfunctional protein glycosylation, and many studies have focused on the pathophysiology underlying this association. This review aims to summarize the research progress on protein glycosylation in the pathogenesis of muscle diseases and provides new insight into the muscle research field. METHODS: Literatures were reviewed comparatively and data were organized to find information about protein glycosylation and its role in muscle disease. RESULTS: Protein glycosylation modification is closely related to the occurrence of muscle diseases. α-DG is a key protein in the study of inherited muscle diseases and has a wide range of glycosylation, including O-linked glycosylation and N-linked glycosylation. Besides, O-GlcNAc glycosylation is an important mechanism of protein glycosylation, helping maintaining the structure and function of skeletal muscle and participating in multiple biological processes. Protein glycosylation is also connected to muscle disease and neurodegenerative diseases, especially Alzheimer's disease. CONCLUSIONS: Taken together, better understanding of protein glycosylation and its implication in muscle disease would help provide new perspectives in the prevention and treatment measures for human muscle diseases.


Assuntos
Doenças Musculares , Processamento de Proteína Pós-Traducional , Glicosilação , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Proteínas/metabolismo
6.
Mol Pharm ; 18(8): 2959-2973, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189919

RESUMO

Muscle atrophy usually occurs under mechanical unloading, which increases the risk of injury to reduce the functionality of the moving system, while there is still no effective therapy until now. It was found that miR-194 was significantly downregulated in a muscle atrophy model, and its target protein was the myocyte enhancer factor 2C (MEF2C). miR-194 could promote muscle differentiation and also inhibit ubiquitin ligases, thus miR-194 could be used as a nucleic acid drug to treat muscle atrophy, whereas miRNA was unstable in vivo, limiting its application as a therapeutic drug. A gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA here. Exogenous miR-194 was loaded in GNs and injected into the muscle atrophy model. It demonstrated that the muscle fiber cross-sectional area, in situ muscle contractile properties, and myogenic markers were increased significantly after treatment. It proposed miR-194 loaded in GNs as an effective treatment for muscle atrophy by promoting muscle differentiation and inhibiting ubiquitin ligase activity. Moreover, the developed miRNA delivery system, taking advantage of its tunable composition, degradation rate, and capacity to load various drug molecules with high dosage, is considered a promising platform to achieve precise treatment of muscle atrophy-related diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gelatina/química , MicroRNAs/administração & dosagem , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Nanosferas/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Células Satélites de Músculo Esquelético/metabolismo , Resultado do Tratamento
7.
J Cell Physiol ; 234(8): 13318-13331, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30633347

RESUMO

We examined ultrastructure protective phenomena and mechanisms of slow and fast muscles in hibernating Daurian ground squirrels (Spermophilus dauricus). Some degenerative changes such as slightly decreased sarcomere length and vacuolization occurred in hibernation, but periaxonal capsular borders in intrafusal fibers remained distinct and the arrangement of extrafusal fibers and Z-lines unscathed. In soleus samples, the number of glycogenosomes more than tripled during hibernation. The expression of phosphorylated glycogen synthase remained unaltered while that of glycogen phosphorylase decreased during hibernation. The number of extensor digitorum longus glycogenosomes decreased and the expression of phosphorylated glycogen synthase decreased, while glycogen phosphorylase expression remained unaltered. The nuclei number remained unchanged. Kinesin and desmin, preventors of nuclear loss and damage, were maintained or just slightly reduced in hibernation. The single-fiber mitochondrial concentration and sub-sarcolemmal mitochondrial number increased in both muscle types. The expression of vimentin, which anchors mitochondria and maintains Z-line integrity, was increased during and after hibernation. Also, dynamin-related protein 1, mitochondrial fission factor, and adenosine triphosphate synthase were elevated in both muscle types. These findings confirm a remarkable ultrastructure preservation and show an unexpected increase in mitochondrial capacity in hibernating squirrels.


Assuntos
Hibernação/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Sciuridae/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
8.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699924

RESUMO

Skeletal systems provide support, movement, and protection to the human body. It can be affected by several life suffering bone disorders such as osteoporosis, osteoarthritis, and bone cancers. It is not an easy job to treat bone disorders because of avascular cartilage regions. Treatment with non-specific drug delivery must utilize high doses of systemic administration, which may result in toxicities in non-skeletal tissues and low therapeutic efficacy. Therefore, in order to overcome such limitations, developments in targeted delivery systems are urgently needed. Although the idea of a general targeted delivery system using bone targeting moieties like bisphosphonates, tetracycline, and calcium phosphates emerged a few decades ago, identification of carrier systems like viral and non-viral vectors is a recent approach. Viral vectors have high transfection efficiency but are limited by inducing immunogenicity and oncogenicity. Although non-viral vectors possess low transfection efficiency they are comparatively safe. A number of non-viral vectors including cationic lipids, cationic polymers, and cationic peptides have been developed and used for targeted delivery of DNA, RNA, and drugs to bone tissues or cells with successful consequences. Here we mainly discuss such various non-viral delivery systems with respect to their mechanisms and applications in the specific targeting of bone tissues or cells. Moreover, we discuss possible therapeutic agents that can be delivered against various bone related disorders.


Assuntos
Doenças Ósseas/terapia , Animais , Doenças Ósseas/tratamento farmacológico , Difosfonatos/química , Difosfonatos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Transfecção/métodos
9.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690044

RESUMO

Gene therapy is manipulation in/of gene expression in specific cells/tissue to treat diseases. This manipulation is carried out by introducing exogenous nucleic acids, such as DNA or RNA, into the cell. Because of their negative charge and considerable larger size, the delivery of these molecules, in general, should be mediated by gene vectors. Non-viral vectors, as promising delivery systems, have received considerable attention due to their low cytotoxicity and non-immunogenicity. As research continued, more and more functional non-viral vectors have emerged. They not only have the ability to deliver a gene into the cells but also have other functions, such as the performance of fluorescence imaging, which aids in monitoring their progress, targeted delivery, and biodegradation. Recently, many reviews related to non-viral vectors, such as polymers and cationic lipids, have been reported. However, there are few reviews regarding functional non-viral vectors. This review summarizes the common functional non-viral vectors developed in the last ten years and their potential applications in the future. The transfection efficiency and the transport mechanism of these materials were also discussed in detail. We hope that this review can help researchers design more new high-efficiency and low-toxicity multifunctional non-viral vectors, and further accelerate the progress of gene therapy.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanopartículas/metabolismo , Animais , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Humanos , Nanopartículas/química
10.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835596

RESUMO

Osteoporosis, a disease characterized by both loss of bone mass and structural deterioration of bone, is the most common reason for a broken bone among the elderly. It is known that the attenuated differentiation ability of osteogenic cells has been regarded as one of the greatest contributors to age-related bone formation reduction. However, the effects of current therapies are still unsatisfactory. In this study we identify a novel long noncoding RNA AK045490 which is correlated with osteogenic differentiation and enriched in skeletal tissues of mice. In vitro analysis of bone-derived mesenchymal stem cells (BMSCs) showed that AK045490 inhibited osteoblast differentiation. In vivo inhibition of AK045490 by its small interfering RNA rescued bone formation in ovariectomized osteoporosis mice model. Mechanistically, AK045490 inhibited the nuclear translocation of ß-catenin and downregulated the expression of TCF1, LEF1, and Runx2. The results suggest that Lnc-AK045490 suppresses ß-catenin/TCF1/Runx2 signaling and inhibits osteoblast differentiation and bone formation, providing a novel mechanism of osteogenic differentiation and a potential drug target for osteoporosis.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoporose/tratamento farmacológico , RNA Longo não Codificante/genética , RNA Interferente Pequeno/administração & dosagem , Transdução de Sinais , Animais , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Feminino , Fator 1-alfa Nuclear de Hepatócito/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Osteoporose/genética , Osteoporose/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , beta Catenina/metabolismo
11.
Org Biomol Chem ; 16(42): 7833-7842, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30084471

RESUMO

Structure-activity relationship (SAR) studies are very critical to design ideal gene vectors for gene delivery. However, It is difficult to obtain SAR information of low-generation dendrimers due to the lack of easy structural modification ways. Here, we synthesized a novel family of rigid aromatic backbone-based low-generation polyamidoamine (PAMAM) dendrimers. According to the number of primary amines, they were divided into two types: four-amine-containing PAMAM (DL1-DL5) and eight-amine-containing PAMAM (DL6-DL10). Due to the introduction of a rigid aromatic backbone, the low-generation PAMAM could be modified easier by different hydrophobic aliphatic chains. Several assays were used to study the interactions of the PAMAM dendrimers with plasmid DNA, and the results revealed that they not only had good DNA binding ability but also could efficiently condense DNA into spherical-shaped nanoparticles with suitable sizes and zeta potentials. The SAR studies indicated that the gene-transfection efficiency of the synthesized materials depended on not only the structure of their hydrophobic chains but also the number of primary amines. It was found that four-amine-containing PAMAM prepared from oleylamine (DL5) gave the best transfection efficiency, which was 3 times higher than that of lipofectamine 2000 in HEK293 cells. The cellular uptake mechanism mediated by DL5 was further investigated, and the results indicated that DL5/DNA complexes entered the cells mainly via caveolae and clathrin-mediated endocytosis. In addition, these low-generation PAMAMs modified with a single hydrophobic tail showed lower toxicity than lipofectamine 2000 in MC3T3-E1, MG63, HeLa, and HEK293 cells. These results reveal that such a type of low-generation polyamidoamines might be promising non-viral gene vectors, and also give us clues for the design of safe and high-efficiency gene vectors.


Assuntos
Dendrímeros , Vetores Genéticos , Poliaminas , Aminas/química , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/efeitos adversos , Dendrímeros/síntese química , Dendrímeros/química , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/síntese química , Vetores Genéticos/química , Células HeLa , Humanos , Nanopartículas/química , Plasmídeos/química , Relação Estrutura-Atividade
12.
Proteome Sci ; 14: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833457

RESUMO

BACKGROUND: Daurian ground squirrels (Spermophilus dauricus) deviate from significant increase of protein catabolism and loss of myofibrillar contents during long period of hibernation inactivity. METHODS: Here we use iTRAQ based quantitative analysis to examine proteomic changes in the soleus of squirrels in pre-hibernation, hibernation and post-hibernation states. The total proteolysis rate of soleus was measured by the release of the essential amino acid tyrosine from isolated muscles. Immunofluorescent analysis was used to determine muscle fiber cross-sectional area. Western blot was used for the validation of the quantitative proteomic analysis. RESULTS: The proteomic responses to hibernation had a 0.4- to 0.8-fold decrease in the myofibrillar contractile protein levels of myosin-3, myosin-13 and actin, but a 2.1-fold increase in myosin-2 compared to pre-hibernation group. Regulatory proteins such as troponin C and tropomodulin-1 were 1.4-fold up-regulated and 0.7-fold down-regulated, respectively, in hibernation compared to pre-hibernation group. Moreover, 10 proteins with proteolytic function in hibernation, which was less than 14 proteins in the post-hibernation group, were up-regulated relative to the pre-hibernation group. The total proteolysis rates of soleus in hibernation and post-hibernation groups were significantly inhibited as compared with pre-hibernation group. CONCLUSION: These findings suggest that the myofibrillar remodeling and partial suppression of myofibrillar proteolysis were likely responsible for preventing skeletal muscle atrophy during prolonged disuse in hibernation. This is the first study where the myofibrillar contents and relevant synthesis and proteolytic proteins in slow soleus was discussed based on proteomic investigation performed on wild Daurian ground squirrels. Our results lay the foundation for further research in preventing disuse-induced skeletal muscle atrophy in mammals.

13.
Front Plant Sci ; 14: 1133062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959930

RESUMO

Mulberry (Morus alba L.) has a special significance in the history of agriculture and economic plant cultivation. Mulberry has strong environmental adaptability, a wide planting range, and abundant output. It is not only an important resource for silkworm breeding but also a raw ingredient for various foods and has great potential for the development of biological resources. The bioactivities of mulberry in different planting areas are not the same, which is an obstacle to the development of mulberry. This study collected information on the planting conditions of mulberry branches in 12 planting areas, such as altitude, temperature difference, and precipitation. A comparison of the levels of 12 constituents of mulberry branches from mulberry grown in different planting areas was then made. An in vitro model was used to study the bioactivities of mulberry branches in the 12 planting areas, and mathematical analysis was used to explain the possible reasons for the differences in the composition and bioactivities of mulberry branches in different planting areas. After studying mulberry samples from 12 planting areas in China, it was found that a small temperature difference could affect the antiapoptotic effect of mulberry branch on microvascular endothelial cells by changing the levels and proportions of rutin, hyperoside, and morusin. Adequate irrigation can promote the antioxidation of the mulberry branch on microvascular endothelial cells by changing the levels and proportions of scopoletin and quercitrin. The results of the analysis of planting conditions and the levels of active constituents and their correlation with bioactivities support the improvement of mulberry planting conditions and have great significance in the rational development of mulberry resources. This is the first time that a mathematical analysis method was used to analyze the effects of planting conditions on mulberry biological activity.

14.
Viruses ; 14(10)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36298825

RESUMO

Over the last three years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related health crisis has claimed over six million lives and caused USD 12 trillion losses to the global economy. SARS-CoV-2 continuously mutates and evolves with a high basic reproduction number (R0), resulting in a variety of clinical manifestations ranging from asymptomatic infection to acute respiratory distress syndrome (ARDS) and even death. To gain a better understanding of coronavirus disease 2019 (COVID-19), it is critical to investigate the components that cause various clinical manifestations. Single-cell sequencing has substantial advantages in terms of identifying differentially expressed genes among individual cells, which can provide a better understanding of the various physiological and pathological processes. This article reviewed the use of single-cell transcriptomics in COVID-19 research, examined the immune response disparities generated by SARS-CoV-2, and offered insights regarding how to improve COVID-19 diagnosis and treatment plans.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Teste para COVID-19 , Transcriptoma , Número Básico de Reprodução
15.
iScience ; 25(3): 103949, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35265818

RESUMO

Osteoporosis has become a high incident bone disease along with the aging of human population. Long noncoding RNAs (LncRNAs) play an important role in osteoporosis incidence. In this study, we screened out an LncRNA negatively correlated with osteoblast differentiation, which was therefore named Lnc-DIF (differentiation inhibiting factor). Functional analysis proved that Lnc-DIF inhibited bone formation. A special structure containing multiple 53 nucleotide repeats was found in the trailing end of Lnc-DIF. Our study suggested that this repeat sequence could sequester multiple miR-489-3p and inhibit bone formation through miR-489-3p/SMAD2 axis. Moreover, siRNA of Lnc-DIF would rescue bone formation in both aging and ovariectomized osteoporosis mice. This study revealed a kind of LncRNA that could function as a sponge and regulate multiple miRNAs. RNA therapy techniques that target these LncRNAs could manipulate its downstream miRNA-target pathway with significantly higher efficiency and specificity. This provided potential therapeutic insight for RNA-based therapy for osteoporosis.

16.
Aviat Space Environ Med ; 82(7): 689-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21748906

RESUMO

BACKGROUND: This study aimed to examine the effects of a new hind limb disuse model on the morphology and fiber type distribution of the extensor digitorum longus (EDL) of rats. Quicker onset of disuse atrophy would reduce the amount of time the animals have to be subjected to tail suspension. METHODS: The new hind limb disuse mode was achieved by tail suspension (TS) and one hind limb fixed by plaster-casting (tail suspension-immobilization, TS+Im). There were 42 female Sprague-Dawley rats randomly divided into 7 groups (6 rats in each group) and exposed to the conditions for 0-6 wk, respectively. The cross-sectional area (CSA) and the types of muscle fiber of the rats' EDL were measured and classified by histochemical staining. RESULTS: The decrease of EDL's CSA caused by TS+Im was more obvious (significant change was observed after 4 wk and Type I fiber's CSA decreased 27.3% after 6 wk) than that caused by TS only (significant change occurred after 6 wk and Type I fiber's CSA diminished 18.01% at that time). TS lead to the transition of Type IIB fibers to Type I and IIA fibers while TS+Im led to Type I and IIA fibers getting converted to Type IIB fibers. DISCUSSION: When compared to TS only, TS+Im caused faster and greater reduction of the EDL's CSA in rats. TS+Im can also lead to a shift from oxidative to glycolytic metabolism of the EDL muscle fiber. Tail suspension-immobilization is a new hind limb disuse model for the EDL and may be more effective.


Assuntos
Elevação dos Membros Posteriores/métodos , Modelos Animais , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/patologia , Animais , Feminino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Ratos , Ratos Sprague-Dawley
17.
Chin Herb Med ; 13(3): 313-331, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36118922

RESUMO

Objective: Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment. Methods: Here, we introduced a systematic pharmacology model, combining the absorption, distribution, metabolism, and excretion (ADME) screening model, drug targeting and network pharmacology, to probe into the therapeutic mechanisms of herbs in osteoporosis. Results: We obtained 86 natural compounds with favorable pharmacokinetic profiles and their 58 targets from seven osteoporosis-related herbs. Network analysis revealed that they probably synergistically work through multiple mechanisms, such as suppressing inflammatory response, maintaining bone metabolism or improving organism immunity, to benefit patients with osteoporosis. Furthermore, experimental results showed that all the five compounds (calycosin, asperosaponin VI, hederagenin, betulinic acid and luteolin) enhanced osteoblast proliferation and differentiation in vitro, which corroborated the validity of this system pharmacology approach. Notably, gentisin and aureusidin among the identified compounds were first predicted to be associated with osteoporosis. Conclusion: Herbs and their natural compounds, being characterized as the classical combination therapies, might be engaged in multiple mechanisms to coordinately improve the osteoporosis symptoms. This work may contribute to offer novel strategies and clues for the therapy and drug discovery of osteoporosis and other complex diseases.

18.
ACS Omega ; 5(49): 31575-31583, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344810

RESUMO

Caking constitutes a major problem for the flowability, transport, packaging, and consumption of hygroscopic granular crystalline materials such as salt. Sodium chloride is the most abundant salt on the earth and known to form strong lumps, mainly due to cycles of water uptake and water evaporation. We report on a multiscale study of the anticaking effect of the bio-based additive Fe-mTA, a metal-organic complex of iron (III) and meso-tartrate. Drying-deliquescence cycling experiments are performed to reproduce the situation in which the salt undergoes repeated humidity fluctuations. Our results show that Fe-mTA acts as a nucleation promoter and growth inhibitor by inducing roughness on the surface of crystals. To directly study the effect of Fe-mTA down to the micrometer scale, we study liquid capillary bridges between two macroscopic salt crystals by applying droplets of salt solution with various levels of additives. Scanning electron microscopy and three-dimensional (3D) laser scanning confocal profilometry results show that Fe-mTA produces a surface roughness at the micron scale. This roughness decreases the effective contact area between crystals and promotes the spreading of the liquid bridge; consequently, the formation of a solid bridge between grains with water evaporation is avoided, thus preventing the caking phenomenon and, in addition, preventing adhesion of the crystals to solid substrates.

19.
ChemistryOpen ; 9(3): 285-300, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32154049

RESUMO

Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.


Assuntos
Glicoproteínas/metabolismo , Lectinas/química , Polissacarídeos/química , Biomarcadores/química , Glicosilação , Humanos , Análise em Microsséries , Análise Serial de Proteínas , Conformação Proteica
20.
Front Endocrinol (Lausanne) ; 11: 516213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193074

RESUMO

MicroRNAs (miRNAs) are single-stranded RNA molecules that control gene expression in various processes, such as cancers, Alzheimer's disease, and bone metabolic diseases. However, the regulatory roles of miRNAs in osteoporosis have not been systematically analyzed. Here, we performed a comprehensive analysis to identify the differentially expressed miRNAs involved in osteoporosis. MiRNAs associated with osteoporosis were collected through literature retrieval and further screened based on specific inclusion and exclusion criteria. The osteoporosis therapeutic targets of miRNAs were obtained by the integration of miRWalk 3.0 database and five human disease therapeutic target databases. Then, the network analysis and functional enrichment analysis of miRNAs and their targets were performed. As a result, 11 eligible miRNAs were identified highly associated with osteoporosis. MiRNA-mRNA network demonstrated there were the complex mutual interactions between miRNAs and their targets. Besides, ADRB2, AR, ESR1, FGFR1, TRAF6, etc., were identified as the top hub genes in protein-protein interaction (PPI) network. Functional enrichment analysis revealed that miRNAs and their targets were mainly mapped on processes associated with bone and immune system, such as bone remolding, bone mineralization, PI3K/AKt, TNF signaling pathways and Th17 cell differentiation. RT-PCR results showed that the expression of miR-335-3p was significantly down-regulated in hind limb unloading (HLU) mice tibia samples compared with controls, the remaining 10 miRNAs were significantly up-regulated after HLU (P < 0.01). In summary, we identified 11 differentially expressed miRNAs and their hub target genes in osteoporosis, which may be novel diagnostic biomarkers for osteoporosis.


Assuntos
Ontologia Genética , Redes Reguladoras de Genes , MicroRNAs/genética , Osteoporose/genética , Mapas de Interação de Proteínas/genética , Animais , Biologia Computacional , Bases de Dados Genéticas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Elevação dos Membros Posteriores , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Osteoporose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA