Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Microb Pathog ; 176: 106001, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682670

RESUMO

The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Aviária/epidemiologia , Animais Selvagens , Prevalência , Aves , Influenza Humana/epidemiologia , Filogenia , Surtos de Doenças/veterinária
2.
Microb Pathog ; 174: 105924, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473667

RESUMO

Piglet diarrhea caused by the porcine epidemic diarrhea virus (PEDV) is a common problem on pig farms in China associated with high morbidity and mortality rates. In this study, three PEDV isolates were successfully detected after the fourth blind passage in Vero cells. The samples were obtained from infected piglet farms in Jilin (Changchun), and Shandong (Qingdao) Provinces of China and were designated as CH/CC-1/2018, CH/CC-2/2018, and CH/QD/2018. According to the analysis of the complete S protein gene sequence, the CH/CC-1/2018 and CH/CC-2/2018 were allocated to the G2b branch, while CH/QD/2018 was located in the G1a interval and was closer to the vaccine strain CV777. Successful detection and identification of the isolated strains were carried out using electron microscopy and indirect immunofluorescence. Meanwhile, animal challenge experiments and viral RNA copies determination were used to compare the pathogenicity. The results showed that CH/CC-1/2018 in Changchun was more pathogenic than CH/QD/2018 in Qingdao. In conclusion, the discovery of these new strains is conducive to the development of vaccines to prevent the pandemic of PEDV, especially that the CH/CC-1/2018, and CH/CC-2/2018 were not related to the classical vaccine strain CV777.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Células Vero , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Virulência , Filogenia , Diarreia/veterinária , China/epidemiologia
3.
J Immunol ; 207(8): 2179-2191, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34497150

RESUMO

Gut microbes play an important role in the development of host B cells. It has been controversial whether GALT is the development site of B cells in pigs. By investigating the relationship between gut microbes and the development of B cells in the GALT of piglets, we found, to our knowledge for the first time, that early B cells exist in the gut lamina propria (LP) in pigs at different ages. We further used Lactobacillus rhamnosus GG (LGG) to treat piglets. The results showed that LGG promotes the development of the early B lineage, affects the composition of the Ig CDR3 repertoires of B cells, and promotes the production of IgA in the intestinal LP. Additionally, we found that the p40 protein derived from LGG can activate the EGFR/AKT and NF-κB signaling pathways, inducing porcine intestinal epithelial cells (IPEC-J2) to secrete a proliferation-inducing ligand (APRIL), which promotes IgA production in B cells. Finally, we identified ARF4 and DIF3 as candidates for p40 receptors on IPEC-J2 by GST pull-down, liquid chromatography-mass spectrometry/mass spectrometry analysis, and coimmunoprecipitation. In conclusion, LGG could promote early B cell differentiation and development in the intestinal LP in piglets and might contribute to promoting IgA production via secretion of p40, which interacts with the membrane receptors on IPEC-J2 and induces them to secrete APRIL. Our study will provide insight to aid in better utilization of probiotics to increase human health.


Assuntos
Linfócitos B/imunologia , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal/imunologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/patologia , Lacticaseibacillus rhamnosus/imunologia , Mucosa/imunologia , Animais , Formação de Anticorpos , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Proteínas de Fluorescência Verde/metabolismo , NF-kappa B/metabolismo , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais , Suínos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
4.
Microb Pathog ; 155: 104898, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33878398

RESUMO

Salmonellosis is a worldwide zoonotic disease that poses a serious threat to the reproduction of livestock and poultry and the health of young animals. Probiotics including Bacillus species, have received increasing attention as a substitute for antibiotics. In this study, chicks infected with Salmonella were fed feed supplemented with the BSH to observe the pathological changes in the liver, detect the number of viable bacteria in the liver and spleen, and record the death of the chicks. The results showed that BSH could reduce the pathological changes in the liver and the invasion of Salmonella into the liver and spleen of chicks. In addition, the survival rate of chicks in the BSH experimental group was 60%, while that in the infected control group was 26%, indicating that BSH had a protective effect on chicks infected with Salmonella. Finally, the fecal microflora of 9-day-old chicks was analyzed by 16S rRNA high-throughput sequencing. The results showed that Salmonella infection could cause intestinal flora changes, while BSH could alleviate this change. In addition, BSH also promoted the proliferation of Lactobacillus salivarius in the cecum of chick. This study emphasized that BSH has anti- Salmonella infection effects in chickens and can be used as a candidate microecological preparation strain.


Assuntos
Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Salmonelose Animal , Ração Animal , Animais , Bacillus subtilis , Ceco , Galinhas , Doenças das Aves Domésticas/prevenção & controle , RNA Ribossômico 16S/genética , Salmonelose Animal/prevenção & controle
5.
Microb Pathog ; 160: 105204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562554

RESUMO

H9N2 subtype, a low pathogenic avian influenza virus, is emerging as a major causative agent circulating poultry workplaces across China and other Asian countries. Increasing case number of interspecies transmissions to mammals reported recently provoked a great concern about its risks inducing global pandemics. In an attempt to understand the underlying mechanism of how the H9N2 virus disrupts the interspecies segregation to transmit to mammals. A mutant H9N2 strain was obtained by passaging the wildtype H9N2 A/chicken/Hong Kong/G9/1997 eight times from lung to lung in BALB/c mice. Our finding revealed that mice manifested severe clinical symptoms including losses of body weight, pathological damages in pulmonary sites and all died within two weeks after infected with the mutated H9N2, whereas all mice survived upon infected with wildtype strain in comparison, which suggested increased pathogenicity of the mutant strain. In addition, mice showed enhanced levels of proinflammatory cytokines in sera, including IL-6, TNF-α and IL-1ß compared to those subjected to wildtype viral infections. Sequence analysis showed that five amino acid substitutions occurred at PB2627, HA87, HA234, NP387 and M156, and a deletion mutation happened in the M gene (M157). Of these mutations, PB2 E627K played key roles in modulating lethality in mice. Taken together, the mutant H9N2 strain obtained by serial passaging of its wildtype in mice significantly increased its virulence leading to death of mice, which might be associated the accumulated mutations occurred on its genome.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Filogenia , Virulência
6.
J Am Chem Soc ; 142(1): 573-580, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31789517

RESUMO

Pre-schisanartanin C belongs to the family of Schisandra nortriterpenoids with potent antihepatitis, antitumor, and anti-HIV activities. This paper presents the enantioselective total synthesis of pre-schisanartanin C (1). An important step in the total synthesis of 1 is gold-catalyzed intramolecular cyclopropanation of a 1,8-enyne substrate bearing a secondary ester group at the propargylic position to prepare a bicyclo[6.1.0]nonane core. Additional highlights include (i) an asymmetric Diels-Alder reaction to install the initial C5 stereogenic center of 1 and (ii) a sequential Pd-catalyzed Stille coupling, regio- and stereoselective Sharpless asymmetric dihydroxylation, and a subsequent intramolecular lactonization to construct the side chain of 1. The developed chemistry paves the way for the total syntheses of other family members bearing highly rigid bicyclo[6.1.0]nonane cores.


Assuntos
Triterpenos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Ciclopropanos/química , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Triterpenos/química , Triterpenos/farmacologia
7.
Parasitol Res ; 119(9): 2885-2895, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715344

RESUMO

Chicken coccidiosis is a protozoan parasitic disease that leads to considerable economic losses in the poultry industry. In this study, we used invasive Lactobacillus plantarum (L.P) expressing the FnBPA protein as a novel bacterial carrier for DNA delivery into epithelial cells to develop a live oral DNA vaccine. A fusion DNA vaccine co-expressing EtMIC2 and chicken IL-18 (chIL-18) was constructed and then delivered to the host by invasive L.P. Its efficacy against Eimeria tenella challenge was evaluated in chickens by examining the relative weight gain rate; caecal lesion score; OPG; anti-coccidial index (ACI); levels of EtMIC2 antibody, FnBPA, IL-4, IL-18, IFN-γ and SIgA; and proliferation ability and percentages of CD4+ and CD8+ splenocytes. The experimental results showed that chickens immunized with invasive L.P carrying the eukaryotic expression vector pValac-EtMIC2 (pValac-EtMIC2/pSIP409-FnBPA) had markedly improved immune protection against challenge compared with that of chickens immunized with non-invasive L.P (pValac-EtMIC2/pSIP409). However, invasive L.P co-expressing EtMIC2 with the chIL-18 vector exhibited the highest protection efficiency against E. tenella. These results indicate that invasive Lactobacillus-expressing FnBPA improved humoural and cellular immunity and enhanced resistance to E. tenella. The DNA vaccine delivered by invasive Lactobacillus provides a new concept and method for the prevention of E. tenella.


Assuntos
Antígeno 12E7/metabolismo , Coccidiose/veterinária , Eimeria tenella/imunologia , Interleucina-18/metabolismo , Lactobacillus plantarum/metabolismo , Vacinas Protozoárias/imunologia , Vacinas de DNA/imunologia , Animais , Ceco/parasitologia , Galinhas/parasitologia , Coccidiose/parasitologia , Eimeria tenella/genética , Imunidade Celular/imunologia , Imunoglobulina A Secretora/genética , Lactobacillus plantarum/genética , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Aumento de Peso
8.
J Org Chem ; 83(13): 6893-6906, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29508610

RESUMO

The stereoselective construction of the CDEFGH ring system of lancifodilactone G is described. The key steps in this synthesis are (i) ring-closing metathesis for formation of the oxa-bridged eight-membered ring; (ii) an intramolecular Pauson-Khand reaction for construction of the sterically congested F ring; and (iii) sequential cross-metathesis, hydrogenation, and lactonization reactions for installation of the anomerically stabilized bis-spiro ketal fragment of lancifodilactone G.

9.
Appl Microbiol Biotechnol ; 102(19): 8307-8318, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056514

RESUMO

The highly infectious porcine transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets, resulting in severe economic losses in the pork industry worldwide. In this study, we used Lactobacillus plantarum (L. plantarum) to anchor the expression of TGEV antigen (S) to dendritic cells (DCs) via dendritic cell-targeting peptides (DCpep). The results show that S antigen could be detected on the surface of L. plantarum by different detection methods. Furthermore, flow cytometry and ELISA techniques were used to measure the cellular, mucosal, and humoral immune responses of the different orally gavaged mouse groups. The obtained results demonstrated the significant effect of the constructed L. plantarum expressing S-DCpep fusion proteins in inducing high expression levels of B7 molecules on DCs, as well as high levels of IgG, secretory IgA, and IFN-γ and IL-4 cytokines compared with the other groups. Accordingly, surface expression of DC-targeted antigens successfully induced cellular, mucosal, and humoral immunity in mice and could be used as a vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Lactobacillus plantarum/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Imunoglobulina A Secretora/imunologia , Camundongos , Suínos , Vacinação/métodos , Vacinas Virais/imunologia
10.
Appl Microbiol Biotechnol ; 102(19): 8403-8417, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30022263

RESUMO

Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lactobacillus plantarum/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Gastroenterite Suína Transmissível/imunologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina G/imunologia , Suínos , Linfócitos T/imunologia , Vacinas Virais/imunologia
11.
Appl Microbiol Biotechnol ; 102(12): 5077-5088, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29675804

RESUMO

Avian influenza virus (AIV) can infect poultry, mammals, and other hosts and causes enormous economic losses to the global poultry industry. In this study, to develop a novel and potent oral vaccine based on Lactobacillus plantarum (L. plantarum) for controlling the spread of AIV in the poultry industry, we constructed a recombinant L. plantarum strain displaying the 3M2e-HA2 protein of the influenza virus and determined the effect of N/pgsA'-3M2e-HA2 against AIV in chicks. We first confirmed that the 3M2e-HA2 fusion protein was expressed on the surface of L. plantarum via flow cytometry and immunofluorescence experiments. Our experimental results demonstrated that chicks immunized with N/pgsA'-3M2e-HA2 could induce specific humoral, mucosal, and T cell-mediated immune responses, eliciting the host body to protect itself against AIV. Additionally, compared to oral administration, the intranasal immunization of chicks with N/pgsA'-3M2e-HA2 provided a stronger immune response, resulting in a potent protective effect that hindered the loss of body weight, decreasing pulmonary virus titers and reducing lung and throat pathological damages. Thus, our results indicate that our novel approach is an effective method of vaccine design to promote mucosal immunity.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Lactobacillus plantarum/imunologia , Proteínas Recombinantes/imunologia , Imunidade Adaptativa/imunologia , Animais , Galinhas , Vírus da Influenza A/imunologia , Lactobacillus plantarum/genética , Proteínas Recombinantes/genética
12.
J Am Chem Soc ; 139(16): 5732-5735, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28391693

RESUMO

Asymmetric total synthesis of structurally intriguing and highly oxygenated lancifodilactone G acetate (7) has been achieved for the first time in 28 steps from a cheap commodity chemical, 2-(triisopropylsiloxy)-1,3-butadiene.


Assuntos
Acetatos/síntese química , Triterpenos/síntese química , Acetatos/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Triterpenos/química
13.
Appl Microbiol Biotechnol ; 101(23-24): 8475-8484, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29090342

RESUMO

Low pathogenic H9N2 subtype avian influenza virus (AIV) can lead to moderate respiratory symptoms and low egg production rates in poultry. Due to its immunologic suppression, other various infectious pathogens give rise to the co-infection of hosts, causing heavy economic losses in the commercial poultry industry in both China and worldwide. Therefore, it is time to explore a novel, safe, and effective vaccine. We have already made use of the surface of Lactobacillus plantarum to display AIV HA2 (NC8-pSIP409-pgsA'-HA2), which demonstrated that it has a good immunogenicity. In this study, by evaluating the immune protection effect of NC8-pSIP409-pgsA'-HA2 on chickens, we found that the hemagglutination inhibition (HI) antibodies, specificity IgG antibody in chickens, the sIgA titer in broncho alveolar lavage fluids (BALF), and the T cell response were increased notably after oral vaccination with NC8-pSIP409-pgsA'-HA2. In addition, weight loss, lung titers, and lung pathologies were improved when chickens were orally vaccinated with NC8-pSIP409-pgsA'-HA2 after challenge with H9N2 AIV. This strategy lays the foundation for the development of recombinant L. plantarum oral vaccines in the prevention of AIV.


Assuntos
Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Lactobacillus plantarum/metabolismo , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/metabolismo , Líquido da Lavagem Broncoalveolar/química , Galinhas , Portadores de Fármacos , Vetores Genéticos , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Imunoglobulina A Secretora/análise , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H9N2/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Aviária/imunologia , Influenza Aviária/patologia , Influenza Aviária/virologia , Lactobacillus plantarum/genética , Pulmão/patologia , Pulmão/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
14.
Appl Microbiol Biotechnol ; 101(11): 4593-4603, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28353000

RESUMO

Avian influenza virus (AIV) is spreading worldwide and is a serious threat to the health of poultry and humans. In many countries, low pathogenic AIVs, such as H9N2, have become an enormous economic burden on the commercial poultry industry because they cause mild respiratory disease and decrease egg production. A recombinant Lactobacillus plantarum NC8 strain expressing NP-M1-DCpep from H9N2 AIV has been studied in a mouse model. However, it remains unknown whether this L. plantarum strain can induce an immune response and provide protection against H9N2 AIV in chickens. In this study, chickens that were orally vaccinated with NC8-pSIP409-NP-M1-DCpep exhibited significantly increased T cell-mediated immune responses and mucosal sIgA and IgG levels, which provided protection against H9N2 AIV challenge. More importantly, compared with oral administration of NC8-pSIP409-NP-M1-DCpep, intranasal administration induced stronger immune responses and provided effective protection against challenge with the H9N2 virus by reducing body weight loss, lung virus titers, and throat pathology. Taken together, these findings suggest that L. plantarum expressing NP-M1-DCpep has potential as a vaccine to combat H9N2 AIV infection.


Assuntos
Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Galinhas , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Lactobacillus plantarum/genética , Administração Intranasal , Administração Oral , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/biossíntese , Imunoglobulina A/imunologia , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Pulmão/virologia , Faringe/patologia , Faringe/virologia , Aves Domésticas , Linfócitos T/imunologia
15.
Biosci Biotechnol Biochem ; 81(8): 1489-1496, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28644752

RESUMO

Recombination activating gene 2 (RAG2) is necessary for immature B cell differentiation. Antibodies to human and rabbit RAG2 are currently commercially available, but antibodies to swine RAG remain unavailable to date. In this study, the swine RAG2 genes sequence was synthesized and then cloned into a pET-28a vector. The recombinant fusion protein was successfully expressed in E. coli, purified through nickel column chromatography, and further digested with Tobacco Etch Virus protease. The cleaved protein was purified by molecular-exclusion chromatography and named pRAG2. We used pRAG2 to immunize rabbits, collected the serum and purified rabbit anti-pRAG2 polyclonal antibodies. The rabbit anti-pRAG2 polyclonal antibodies were tested via immunofluorescence on eukaryotic cells overexpressing pRAG2 and also able to recognize pig natural RAG2 and human RAG2 protein in western blotting. These results indicated that the prepared rabbit anti-pRAG2 polyclonal antibodies may serve as a tool to detect immature B cell differentiation of swine.


Assuntos
Anticorpos/química , Proteínas de Ligação a DNA/biossíntese , Escherichia coli/genética , Expressão Gênica , Proteínas Nucleares/biossíntese , VDJ Recombinases/biossíntese , Animais , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Western Blotting , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Endopeptidases/química , Escherichia coli/metabolismo , Imunofluorescência , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Soros Imunes/química , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Suínos , VDJ Recombinases/genética , VDJ Recombinases/imunologia
17.
Poult Sci ; 103(10): 104068, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39096825

RESUMO

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.

18.
Int Immunopharmacol ; 130: 111710, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394888

RESUMO

Influenza virus is a kind of virus that poses several hazards of animal and human health. Therefore, it is important to develop an effective vaccine to prevent influenza. To this end we successfully packaged recombinant adenovirus rAd-NP-M2e-GFP expressing multiple copies of influenza virus conserved antigens NP and M2e and packaged empty vector adenovirus rAd-GFP. The effect of rAd-NP-M2e-GFP on the activation of dendritic cell (DC) in vitro and in vivo was detected by intranasal immunization. The results showed that rAd-NP-M2e-GFP promoted the activation of DC in vitro and in vivo. After the primary immunization and booster immunization of mice through the nasal immune way, the results showed that rAd-NP-M2e-GFP induced enhanced local mucosal-specific T cell responses, increased the content of SIgA in broncho alveolar lavage fluids (BALF) and triggered the differentiation of B cells in the germinal center. It is proved that rAd-NP-M2e-GFP can significantly elicit mucosal immunity and systemic immune response. In addition, rAd-NP-M2e-GFP could effectively protect mice after H1N1 influenza virus challenge. To lay the foundation and provide reference for further development of influenza virus mucosal vaccine in the future.


Assuntos
Vacinas contra Adenovirus , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Adenoviridae/genética , Imunização , Vacinas Sintéticas , Imunidade nas Mucosas , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
19.
Microbiome ; 12(1): 20, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317217

RESUMO

BACKGROUND: The gut microbiota is a critical factor in the regulation of host health, but the relationship between the differential resistance of hosts to pathogens and the interaction of gut microbes is not yet clear. Herein, we investigated the potential correlation between the gut microbiota of piglets and their disease resistance using single-cell transcriptomics, 16S amplicon sequencing, metagenomics, and untargeted metabolomics. RESULTS: Porcine epidemic diarrhea virus (PEDV) infection leads to significant changes in the gut microbiota of piglets. Notably, Landrace pigs lose their resistance quickly after being infected with PEDV, but transplanting the fecal microbiota of Min pigs to Landrace pigs alleviated the infection status. Macrogenomic and animal protection models identified Lactobacillus reuteri and Lactobacillus amylovorus in the gut microbiota as playing an anti-infective role. Moreover, metabolomic screening of the secondary bile acids' deoxycholic acid (DCA) and lithocholic acid (LCA) correlated significantly with Lactobacillus reuteri and Lactobacillus amylovorus, but only LCA exerted a protective function in the animal model. In addition, LCA supplementation altered the distribution of intestinal T-cell populations and resulted in significantly enriched CD8+ CTLs, and in vivo and in vitro experiments showed that LCA increased SLA-I expression in porcine intestinal epithelial cells via FXR receptors, thereby recruiting CD8+ CTLs to exert antiviral effects. CONCLUSIONS: Overall, our findings indicate that the diversity of gut microbiota influences the development of the disease, and manipulating Lactobacillus reuteri and Lactobacillus amylovorus, as well as LCA, represents a promising strategy to improve PEDV infection in piglets. Video Abstract.


Assuntos
Infecções por Coronavirus , Microbioma Gastrointestinal , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Doenças dos Suínos/prevenção & controle , Resistência à Doença
20.
Front Microbiol ; 13: 916580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722312

RESUMO

Influenza is a serious respiratory disease that continues to threaten global health. Mucosa-associated invariant T (MAIT) cells use T-cell receptors (TCRs) that recognize microbial riboflavin derived intermediates presented by the major histocompatibility complex (MHC) class I-like protein MR1. Riboflavin synthesis is broadly conserved, but the roles or mechanisms of riboflavin in MR1-/- mouse influenza infection are not well understood. In our study, immunofluorescence techniques were applied to analyze the number and distribution of viruses in lung tissue. The amount of cytokine expression was assessed by flow cytometry (FCM), ELISA, and qPCR. The changes in the fecal flora of mice were evaluated based on amplicon sequencing of the 16S V3-V4 region. Our study showed that MAIT cell deficiency increased mortality and that riboflavin altered these effects in microbiota-depleted mice. The oral administration of riboflavin inhibited IL-1ß, IL-17A, and IL-18 production but significantly increased the expression of IFN-γ, TNF-α, CCL2, CCL3, and CCL4 in a mouse model. The analysis of the mouse flora revealed that riboflavin treatment significantly increased the relative abundance of Akkermansia and Lactobacillus (p < 0.05) and decreased that of Bacteroides. In contrast, MR1-/- mice exhibited a concentrated aggregation of Bacteroides (p < 0.01), which indicated that MAIT cell deficiency reduced the diversity of the bacterial population. Our results define the functions of MAIT cells and riboflavin in resistance to influenza virus and suggest a potential role for riboflavin in enhancing MAIT cell immunity and the intestinal flora diversity. Gut populations can be expanded to enhance host resistance to influenza, and the results indicate novel interactions among viruses, MAIT cells, and the gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA