Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 288(5): 3668-77, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255603

RESUMO

The large conductance voltage- and Ca(2+)-activated K(+) channel (MaxiK, BK(Ca), BK) is composed of four pore-forming α-subunits and can be associated with regulatory ß-subunits. One of the functional roles of MaxiK is to regulate vascular tone. We recently found that the MaxiK channel from coronary smooth muscle is trans-inhibited by activation of the vasoconstricting thromboxane A(2) prostanoid receptor (TP), a mechanism supported by MaxiK α-subunit (MaxiKα)-TP physical interaction. Here, we examined the role of the MaxiK ß1-subunit in TP-MaxiK association. We found that the ß1-subunit can by itself interact with TP and that this association can occur independently of MaxiKα. Subcellular localization analysis revealed that ß1 and TP are closely associated at the cell periphery. The molecular mechanism of ß1-TP interaction involves predominantly the ß1 extracellular loop. As reported previously, TP activation by the thromboxane A(2) analog U46619 caused inhibition of MaxiKα macroscopic conductance or fractional open probability (FP(o)) as a function of voltage. However, the positive shift of the FP(o) versus voltage curve by U46619 relative to the control was less prominent when ß1 was coexpressed with TP and MaxiKα proteins (20 ± 6 mV, n = 7) than in cells expressing TP and MaxiKα alone (51 ± 7 mV, n = 7). Finally, ß1 gene ablation reduced the EC(50) of the U46619 agonist in mediating aortic contraction from 18 ± 1 nm (n = 12) to 9 ± 1 nm (n = 12). The results indicate that the ß1-subunit can form a tripartite complex with TP and MaxiKα, has the ability to associate with each protein independently, and diminishes U46619-induced MaxiK channel trans-inhibition as well as vasoconstriction.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Tromboxano A2/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vasoconstrição/efeitos dos fármacos
2.
Front Med (Lausanne) ; 9: 861371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492354

RESUMO

Retinitis pigmentosa (RP), characterized by the gradual loss of rod and cone photoreceptors that eventually leads to blindness, is the most common inherited retinal disorder, affecting more than 2.5 million people worldwide. However, the underlying pathogenesis of RP remains unclear and there is no effective cure for RP. Mutations in the Mer receptor tyrosine kinase (MERTK) gene induce the phagocytic dysfunction of retinal pigment epithelium (RPE) cells, leading to RP. Studies have indicated that filamentous actin (F-actin)-which is regulated by chaperonin-containing TCP1 subunit 5 (CCT5)-plays a vital role in phagocytosis in RPE cells. However, whether CCT5/F-actin signaling is involved in MERTK-associated RP remains largely unknown. In the present study, we specifically knocked down MERTK and CCT5 through siRNA transfection and examined the expression of CCT5 and F-actin in human primary RPE (HsRPE) cells. We found that MERTK downregulation inhibited cell proliferation, migration, and phagocytic function; significantly decreased the expression of F-actin; and disrupted the regular arrangement of F-actin. Importantly, our findings firstly indicate that CCT5 interacts with F-actin and is inhibited by MERTK siRNA in HsRPE cells. Upregulating CCT5 using CCT5-specific lentiviral vectors (CCT5-Le) rescued the cell proliferation, migration, and phagocytic function of HsRPE cells under the MERTK knockdown condition by increasing the expression of F-actin and restoring its regular arrangement via the LIMK1/cofilin, but not the SSH1/cofilin, pathway. In conclusion, CCT5 protects against the effect of MERTK knockdown in HsRPE cells and demonstrates the potential for effective treatment of MERTK-associated RP.

3.
Genomics ; 81(1): 34-46, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12573259

RESUMO

The members of the Wnt family of secreted factors have oncogenic potential and important roles as developmental regulators. We report an analysis of mouse Wnt9b (also called Wnt15 and Wnt14b), including its cDNA sequence, chromosomal mapping, epithelial cell transforming activity, adult and embryonic tissue expression patterns, and evolution. We also deduced the full-length amino acid sequence of its close relative, Wnt9a (also called Wnt14), from unannotated genomic DNA sequences in GenBank. Full-length comparisons among Wnt amino acid sequences provide evidence that Wnt9b and Wnt9a are close paralogs of each other and are orthologs of Wnt9 genes from shark and hagfish. Mapping Wnt9b to The Jackson Laboratory BSS interspecific backcross panel places it at 63.0 cM on chromosome 11. Sequence comparisons of two pairs of linked Wnt genes (the Wnt9a-Wnt3a pair and the Wnt9b-Wnt3 pair) suggest that they arose from the relatively recent duplication of a single ancestral Wnt gene pair, confirming the close paralogous relationship of Wnt9a and Wnt9b. Wnt9b expression is primarily restricted to the kidney in the adult mouse, with lower levels detected in the preputial gland, liver, and mammary gland. Testing of staged whole mouse embryos from 9.5 to 17.5 days of gestation showed expression at all stages with a peak at day 10.5. In situ hybridization analysis showed expression in most but not all tissues of the 16.5-day embryo. No significant elevation of Wnt9b expression was detected in 29 mouse mammary tumor virus-induced tumors. Overexpression of Wnt9b in C57MG mammary epithelial cells caused small transformed foci in cell monolayers and a moderate morphological transformation in pooled colonies compared with Wnt1.


Assuntos
Evolução Molecular , Glicoproteínas , Proteínas Wnt/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/isolamento & purificação , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Proteínas Wnt/genética
4.
Development ; 129(17): 4159-70, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12163417

RESUMO

PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.


Assuntos
Neoplasias Mamárias Experimentais/etiologia , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Sequência de Bases , Transformação Celular Neoplásica , Deleção de Genes , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase , Monoéster Fosfórico Hidrolases/deficiência , Proteínas Supressoras de Tumor/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA