Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(23): 6126-6137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35040740

RESUMO

Starches are a major constituent of staple foods and are the main source of energy in the human diet (55-70%). In the gastrointestinal tract, starches are hydrolyzed into glucose by α-amylase and α-glucosidase, which leads to a postprandial glucose elevation. High levels of blood glucose levels over sustained periods may promote type 2 diabetes mellitus (T2DM) and obesity. Increasing consumption of starchy foods with a lower glycemic index may therefore contribute to improved health. In this paper, the preparation and properties of several starch-based nanoparticles (SNPs) and cyclodextrins (CDs) derivatives are reviewed. In particular, we focus on the various mechanisms responsible for the ability of these edible nanomaterials to modulate glucose release and the gut microbiome in the gastrointestinal tract. The probiotic functions are achieved through encapsulation and protection of prebiotics or bioactive components in foods or the human gut. This review therefore provides valuable information that could be used to design functional foods for improving human health and wellbeing.


Assuntos
Ciclodextrinas , Diabetes Mellitus Tipo 2 , Nanopartículas , Humanos , Glucose , Prebióticos , Amido , Glicemia
2.
Crit Rev Food Sci Nutr ; 63(19): 4092-4105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34726091

RESUMO

The improved understanding of the connection between diet and health has led to growing interest in the development of functional foods designed to improve health and wellbeing. Many of the potentially health-promoting bioactive ingredients that food manufacturers would like to incorporate into these products are difficult to utilize because of their chemical instability, poor solubility, or low bioavailability. For this reason, nano-based delivery systems are being developed to overcome these problems. Food proteins possess many functional attributes that make them suitable for formulating various kinds of nanocarriers, including their surface activity, water binding, structuring, emulsification, gelation, and foaming, as well as their nutritional aspects. Proteins-based nanocarriers are therefore useful for introducing bioactive ingredients into functional foods, especially for their targeted delivery in specific applications.This review focusses on the preparation, properties, and applications of protein-based nanocarriers, such as nanoparticles, micelles, nanocages, nanoemulsions, and nanogels. In particular, we focus on the development and application of stimulus-responsive protein-based nanocarriers, which can be used to release bioactive ingredients in response to specific environmental triggers. Finally, we discuss the potential and future challenges in the design and application of these protein-based nanocarriers in the food industry.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Nanopartículas/química , Proteínas , Solubilidade , Alimento Funcional
3.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36798974

RESUMO

Plant-derived antioxidants (PD-AOs) are important for food preservation, as well as for human health and nutrition. However, the poor chemical stability and water solubility of many PD-AOs currently limit their application as functional ingredients in foods and pharmaceuticals. Moreover, it is often difficult to isolate and detect specific antioxidants in multi-component systems, which again limits their potential in the food and medical industries. In this review, we highlight recent advances in the use of cyclodextrins (CDs) to overcome these limitations by forming simple, modified and competitive host-guest interactions with PD-AO. The host-guest properties of CDs can be used to enhance the separation efficiency of PD-AOs, as well as to improve their dispersion and stability in food systems. Moreover, the competitive complexation properties of CDs with target molecules can be used to selectively isolate PD-AOs from multi-component systems and develop detection technologies for PD-AOs. Overall, CD-antioxidant interactions have great potential for addressing isolation, detection, and food quality issues.

4.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665600

RESUMO

Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.

5.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702742

RESUMO

Novel, innovative approaches like edible gels (hydrogels and oleogels) are important food materials with great scientific interest due to their positive impacts on structural and functional foods and other unique properties. Biopolymers (protein, starch and other polysaccharides) can be excellent and cost-effective materials for the formed edible gels. Recently, natural gums, although also as biopolymers, are preferred as additives to further improve the textural and functional properties of edible gels, which have received extensive attention. However, these studies have not been outlined in previous reviews. In this review, we highlighted the advantages of gums as additives to construct edible gels. Moreover, the various roles (including electrostatic or covalent interactions) for natural gums in regulation of food gel properties (solvent-holding and rheological properties) are highlighted. Finally, the use of natural gums as additives to improve the stability and targeted delivery of phytochemicals in food gels and their application in food systems are summarized. The information covered in this article may be useful for the design of functional foods that can better meet personalized needs of people.

6.
J Sci Food Agric ; 103(4): 1874-1884, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468888

RESUMO

BACKGROUND: The poor gelling and emulsification properties of pea protein (PeaP) limit its application in gel-based products. In this study, a strong hydrogel and a high internal phase emulsion (HPLE) gel of PeaP were constructed by covalent cross-linking of transglutaminase (TGase) assisted by high-intensity ultrasound. RESULTS: Ultrasound promoted the catalytic efficiency of TGase, with the gel-point temperature dropping from 44 °C to 28 °C after 10 min of ultrasound. As the ultrasound time increased from 1 min to 10 min, the microstructure of the hydrogel also changed from an irregular macropore structure to a relatively homogeneous honeycomb structure. This was accompanied by an improvement in gel strength, water holding capacity, and ultimate stress. Ultrasound enhanced the binding of water to PeaP, but had little effect on the water-locking ability of the network structure. Ultrasonication improved the self-supporting ability of the HPIE gels. The oil droplets within the HPIE gels were closely aligned to form a hexagonal structure. The PeaP layer was further cross-linked by TGase, strengthening the network structure. High internal phase emulsion gel displayed a higher gel strength, viscosity, and good self-healing ability under 1 min ultrasound. Meanwhile, HPIE gel at 1 min of ultrasound could be printed with the highest clarity. CONCLUSION: This work provided some insights into improving the functional properties of PeaP, which is helpful for the design and development of PeaP-based gel products. © 2022 Society of Chemical Industry.


Assuntos
Hidrogéis , Proteínas de Ervilha , Emulsões/química , Transglutaminases/química , Géis/química , Água/química , Reologia
7.
J Sci Food Agric ; 103(10): 4876-4886, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36943926

RESUMO

BACKGROUND: Whole wheat bread is high in nutritional value but poor in technological quality; therefore, research on how to improve its technological quality has attracted extensive attention. The effects of fermentation methods, including straight dough(STD), sourdough (SOD), sponge dough (SPD), and refrigerated SPD (RSD) methods, on the dough and bread quality of whole wheat bread were investigated, focusing on pasting properties, rheological properties, thermal properties, microstructure, basic quality, and starch digestibility. RESULTS: The rapid viscosity analysis and rheological results demonstrated that SOD had the highest pasting temperature and the lowest viscosity, indicating an inhibition of starch pasting and partial protein hydrolysis, whereas the opposite trend presented by SPD and RSD indicated a greater starch hydration and a stronger gluten network. Thermal gravimetric analysis and differential scanning calorimetry results indicated reduced starch thermal degradation and increased starch pasting enthalpy in SOD and RSD. Scanning electron microscopy images revealed that the starch granules of SOD and RSD were tightly wrapped by a gluten network. SOD and RSD breads had the largest specific volume, the softest texture, and the lowest glycemic index. CONCLUSION: The effects of different fermentation methods on dough and bread structure can provide instructive information for future studies on their applications in whole wheat bread production. © 2023 Society of Chemical Industry.


Assuntos
Pão , Triticum , Pão/análise , Triticum/química , Fermentação , Glutens/análise , Amido/química , Farinha/análise
8.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930011

RESUMO

Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.

9.
Crit Rev Food Sci Nutr ; : 1-10, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35822304

RESUMO

Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.

10.
Langmuir ; 37(49): 14380-14389, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34866397

RESUMO

A relatively straightforward green method to fabricate robust hydrophobic sponges for effective removal of oil pollutants and other organic contaminants was developed. These sponges were constructed from bio-sources: citronellal and palmitic acid-modified aminoethyl cyclodextrin-sodium phytate-chitosan (ACCTCS). The modified sponge exhibited desirable mechanical properties and strong hydrophobicity with a water contact angle (WCA) of 147.8°. Scanning electron microscopy showed that the ACCTCS sponge had a highly porous structure that was particularly suitable for organic component absorption. The sponge exhibited excellent absorption capacities for n-hexane, trichloromethane, vacuum pump oil, and peanut oil (47.9, 32.3, 32.6, and 32.2 g/g, respectively). The removal rate of oil was more than 80% (>26.2 g/g) after 10 absorption-desorption cycles. The ACCTCS sponge also showed good oil/water and organic components/water separation performance. The bio-source materials, green preparation method, and new absorbed-oil recovery strategy provided a novel pathway to construct multifunctional absorbents for oil/water separation in industrial wastewater.


Assuntos
Quitosana , beta-Ciclodextrinas , Interações Hidrofóbicas e Hidrofílicas , Óleos , Porosidade
11.
J Sci Food Agric ; 99(4): 1740-1747, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30226268

RESUMO

BACKGROUND: In order to supply adequate dietary protein for chronic kidney disease (CKD) patients while simultaneously controlling phosphorus intake, a novel method was developed for the preparation of low-phosphorus egg yolk protein (LPYP) using alkaline protease auxiliary dephosphorization. In addition, the physicochemical properties of LPYP were studied. RESULTS: In comparison with raw egg yolk protein (RYP) and defatted egg yolk protein (DFYP), LPYP was found to exhibit differences in amino acid (AA) composition, protein secondary structure, surface hydrophobicity, solubility and emulsion stability. It was observed that dephosphorization improved the AA composition, soluble protein content and dissolution stability of egg yolk protein. In addition, phosphate groups were found to impose a critical influence on the emulsion stability and particle size distribution. The final phosphorus to protein mass ratio (P/Pro) of LPYP was 5.64, which met the requirements of a protein diet for CKD patients. The FAO/WHO mode closeness and stability coefficient were 0.958 and 98.62% respectively. CONCLUSION: LPYP can be effectively obtained by alkaline protease hydrolysis and subsequent alkali dephosphorization. The prepared LPYP can be considered to be a type of safe and suitable protein resource for CKD patients. © 2018 Society of Chemical Industry.


Assuntos
Proteínas do Ovo/química , Gema de Ovo/química , Manipulação de Alimentos/métodos , Fósforo/análise , Aminoácidos/análise , Animais , Proteínas de Bactérias/química , Biocatálise , Galinhas , Ovos/análise , Endopeptidases/química , Solubilidade
12.
Molecules ; 23(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404135

RESUMO

Palm curtain was selected as carrier to immobilize Bacillus circulans ATCC 21783 to produce ß-cyclodextrin (ß-CD). The influence for immobilization to CGTase activity was analyzed to determine the operation stability. 83.5% cyclodextrin glycosyltransferases (CGTase) of the 1st cycle could be produced in the 7th cycle for immobilized cells, while only 28.90% CGTase was produced with free cells. When palm curtain immobilized cells were reused at the 2th cycle, enzyme activities were increased from 5003 to 5132 U/mL, which was mainly due to physical adsorption of cells on palm curtain with special concave surface structure. Furthermore, conditions for expanded culture of immobilized cells in a 5 L fermentation tank were optimized through specific rotation speed procedure (from 350 r/min to 450 r/min with step size of 50 r/min) and fixed ventilation capacity (4.5 L/min), relations between biomass, enzyme activity, pH, and oxygen dissolution was investigated, and the fermentation periods under the two conditions were both 4 h shorter. Compared with free cell, immobilized cell was more stable, effective, and had better application potential in industries.


Assuntos
Bacillus/citologia , Bacillus/metabolismo , Células Imobilizadas/microbiologia , Fermentação/fisiologia , Glucosiltransferases/metabolismo
13.
Food Chem ; 441: 138385, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218152

RESUMO

This study investigated the effects of ß-glucan (0-6%) on the physicochemical properties, structure, and in vitro digestibility of highland barley starch (HBS) under spray drying (SD). SD significantly enhanced the inhibitory effect of 6% ß-glucan on the in vitro digestibility and glucose diffusion of HBS. After SD, the addition of ß-glucan at 4% and 6% concentration significantly increased the pasting temperatures of starch while decreased the rheological properties. Thermal properties demonstrated that ß-glucan improved the thermal stability and residue content of HBS at 600°C, lowered its maximum loss rate, and maintained its thermal stability after SD. Structural properties showed that ß-glucan affected greatly on amorphous regions of HBS after SD. Additionally, ß-glucan dispersed more evenly in the starch system and experienced hydrogen bonding with starch after SD. This study presents a novel approach to enhancing the inhibitory effect of ß-glucan on starch digestion.


Assuntos
Hordeum , beta-Glucanas , Amido/química , Hordeum/química , beta-Glucanas/química , Secagem por Atomização , Temperatura
14.
Int J Biol Macromol ; 256(Pt 2): 128021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967598

RESUMO

Whole wheat bread has high nutritional value but is characterized by inferior quality and a high glycemic index. Studies have shown that adding ß-glucans and protein can improve bread quality. This study investigated the effects of added oat ß-glucan, barley ß-glucan, or yeast ß-glucan on protein synergy and whole wheat dough and bread quality. The mixing properties, rheological properties, and scanning electron microscopy observations showed that the addition of ß-glucan promoted the formation of gluten networks, while the synergy between the wheat proteins and ß-glucan resulted in a more robust and stable gluten network and a stronger physical starch envelope. Rapid visco-analysis and thermal property evaluations showed that ß-glucan addition inhibited the thermal degradation, gelatinization, and retrogradation of starch. Based on the bread quality results, it was found the ß-glucan could cause some damage to the bread baking quality. For example, the hardness of samples with oats, barley, and yeast increased to 881.69 g, 952.97 g, and 631.75 g, respectively, compared to samples without ß-glucan (317.49 g), whereas the inclusion of yeast ß-glucan proved to be less detrimental. Protein and ß-glucan both reduced starch digestion to some degree, and showed better synergistic effects, with the lowest estimated glycemic index of 70.08 observed in bread containing added yeast ß-glucan and protein. Therefore, yeast ß-glucan and protein mixtures could be selected as viable formulations for enhancing the quality of whole wheat bread.


Assuntos
Hordeum , beta-Glucanas , Triticum/metabolismo , Saccharomyces cerevisiae/metabolismo , Pão/análise , Amido/metabolismo , Água/análise , Glutens , Hordeum/metabolismo , beta-Glucanas/metabolismo , Farinha/análise
15.
Int J Biol Macromol ; 260(Pt 1): 129417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224806

RESUMO

The impacts of protein types and its interaction with ß-glucan on the in vitro digestibility of highland barley starch were investigated through analyzing physicochemical and microstructural properties of highland barley flour (HBF) after sequentially removing water- (WP), salt- (SP), alcohol- (AP) and alkali-soluble (AlkP) proteins. Resistant starch (RS) increased significantly in HBF after removing WP and SP, and RS of HBF was lower than that of without ß-glucan. After removing WP, SP and AP, swelling powers of HBF without ß-glucan (9.33-9.77) were higher than those of HBF (12.09-15.95). Trends of peak viscosity and peak temperature (thermal degradation temperature) were similar as swelling power, and HBF without AP showed the highest peak temperature (310.33 °C). Removals of different proteins improved the crystalline structure and short-range order of starch. There was a blue shift in T2 values and an opposite change in free water proportion. The matrix on starch surface was mainly formed by AP and AlkP, which could be aggregated by ß-glucan. But, the inhibitory effect of AP or AlkP was stronger than that of proteins combined with ß-glucan. These results help in the development of starch-based foods with different digestive properties by combining different protein types with ß-glucan.


Assuntos
Hordeum , beta-Glucanas , Amido/química , Hordeum/química , beta-Glucanas/química , Farinha , Amido Resistente , Água/química
16.
Food Chem ; 440: 138233, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142551

RESUMO

There is an increasing demand for stable, highly viscoelastic, and printable emulsion gels based on pea protein (PeaP) as a substitute for animal fat. In this article, a simple pH modulation strategy was applied to regulate high internal phase (HIPE) gels prepared from PeaP and hydroxypropyl starch (HPS). The results showed that the interfacial tension of PeaP decreased from 11.9 to 7.1 mN/m at 5% PeaP and from 9.9 to 6.3 mN/m at 10% PeaP with increasing pH from 7 to 11. The incorporation of HPS improved the strength and physical stability of the HIPE gel. HIPE gels showed the best three-dimensional printing ability at pH 11. The main mechanism of HIPE gels at pH 3 was hydrophobic interaction, while electrostatic interaction dominated at pH 7, 9, and 11. This study may provide insights into the development of PeaP-based HIPE gels as a printable fat alternative.


Assuntos
Proteínas de Ervilha , Amido , Animais , Emulsões/química , Amido/química , Derivados da Hipromelose , Géis/química , Reologia , Concentração de Íons de Hidrogênio
17.
Int J Biol Macromol ; 268(Pt 2): 131681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643913

RESUMO

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.


Assuntos
Pão , Hordeum , Peso Molecular , Proteínas de Plantas , Amido , Triticum , beta-Glucanas , beta-Glucanas/química , Pão/análise , Digestão , Hordeum/química , Proteínas de Plantas/química , Amido/química , Triticum/química , Água/química
18.
Int J Biol Macromol ; 272(Pt 2): 132773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823746

RESUMO

The structure and physicochemical properties of the complex system of peanut protein and gluten with different concentrations (0 %, 0.5 %, 1 %, and 2 %) of carboxymethyl cellulose (CMC) or sodium alginate (SA) under high-moisture extrusion were studied. The water absorption index and low-field nuclear magnetic resonance showed that adding 0.5 % SA could significantly improve the water uniformity of peanut protein extrudates, while the increase in water absorption was not significant. The texture properties showed that adding CMC or SA increased the hardness, vertical shearing force, and parallel shearing force of the system. Furthermore, adding 0.5 % SA increased approximately 33 % and 75.2 % of the tensile distance and strength of the system, respectively. The secondary structure showed that CMC or SA decreased the proportion of α-helix, ß-turn, and random coil, while increased ß-sheet proportion. The results of hydrophobicity, unextractable protein, and endogenous fluorescence revealed that CMC and SA reduced the surface hydrophobicity of the system and caused fluorescence quenching in the system. Additionally, it was found that CMC generally increased the free sulfhydryl group content, while SA exhibited the opposite effect.


Assuntos
Arachis , Coloides , Glutens , Proteínas de Plantas , Polissacarídeos , Triticum , Glutens/química , Arachis/química , Coloides/química , Proteínas de Plantas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Triticum/química , Fenômenos Químicos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Carboximetilcelulose Sódica/química , Resistência à Tração , Alginatos/química , Alginatos/farmacologia
19.
Int J Biol Macromol ; 269(Pt 2): 131967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692528

RESUMO

The development of food-grade high internal phase emulsions (HIPEs) for 3D printing and the replacement of animal fats have attracted considerable attention. In this study, in order to improve the rheological properties and stability of pea protein to prepare HIPE, pea protein/carboxymethyl cellulose (pH-PP/CMC) was prepared and subjected to pH cycle treatment to produce HIPEs. The results showed that pH cycle treatment and CMC significantly reduced the droplet size of HIPEs (from 143.33 to 12.10 µm). At higher CMC concentrations, the interfacial tension of the PP solution decreased from 12.84 to 11.71 mN/m without pH cycle treatment and to 10.79 mN/m with pH cycle treatment. The HIPEs with higher CMC concentrations subjected to pH cycle treatment showed shear thinning behavior and higher viscoelasticity and recovered their solid-like properties after being subjected to 50 % strain, indicating that they could be used for 3D printing. The 3D printing results showed that the pH-PP/CMC HIPE with 0.3 % CMC had the finest structure. Our work provides new insights into developing food-grade HIPEs and facilitating their use in 3D printing inks as nutrient delivery systems and animal fat substitutes.


Assuntos
Carboximetilcelulose Sódica , Emulsões , Proteínas de Ervilha , Impressão Tridimensional , Reologia , Carboximetilcelulose Sódica/química , Concentração de Íons de Hidrogênio , Emulsões/química , Proteínas de Ervilha/química , Viscosidade
20.
Food Chem ; 451: 139477, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678664

RESUMO

In this study, a combination of whey protein (hydrophilic coating) and polydopamine (crosslinking agent) was used to improve the stability and functionality of quercetin-loaded zein nanoparticles. There are two key benefits of the core-shell nanoparticles formed. First, the ability of the polydopamine to bind to both zein and whey protein facilitates the formation of a stable core-shell structure, thereby protecting quercetin from any pro-oxidants in the aqueous surroundings. Second, neutral and hydrophilic whey proteins were used for the surface coating of the nanoparticles to further enhance the sustained and slow release of quercetin, facilitating its sustained release into the body at a slow and steady rate. The results of this study will promote the innovative development of precise nutritional delivery systems for zein and provide a theoretical basis for the design and development of dietary supplements based on hydrophobic food nutrient molecules.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Indóis , Nanopartículas , Polímeros , Zeína , Zeína/química , Indóis/química , Polímeros/química , Nanopartículas/química , Proteínas do Soro do Leite/química , Quercetina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA