RESUMO
ABSTRACT: Studies have examined the therapeutic effect of levosimendan on cardiovascular diseases such as heart failure, perioperative cardiac surgery, and septic shock, but the specific mechanism in mice remains largely unknown. This study aimed to investigate the relaxation mechanism of levosimendan in the thoracic aorta smooth muscle of mice. Levosimendan-induced relaxation of isolated thoracic aortic rings that were precontracted with norepinephrine or KCl was recorded in an endothelium-independent manner. Vasodilatation by levosimendan was not associated with the production of the endothelial relaxation factors nitric oxide and prostaglandins. The voltage-dependent K + channel (K V ) blocker (4-aminopyridine) and selective K Ca blocker (tetraethylammonium) had no effect on thoracic aortas treated with levosimendan, indicating that K V and K Ca channels may not be involved in the levosimendan-induced relaxation mechanism. Although the inwardly rectifying K + channel (K ir ) blocker (barium chloride) and the K ATP channel blocker (glibenclamide) significantly inhibited levosimendan-induced vasodilation in the isolated thoracic aorta, barium chloride had a much stronger inhibitory effect on levosimendan-induced vasodilation than glibenclamide, suggesting that levosimendan-induced vasodilation may be mediated by K ir channels. The vasodilation effect and expression of K ir 2.1 induced by levosimendan were further enhanced by the PKC inhibitor staurosporine. Extracellular calcium influx was inhibited by levosimendan without affecting intracellular Ca 2+ levels in the isolated thoracic aorta. These results suggest that K ir channels play a more important role than K ATP channels in regulating vascular tone in larger arteries and that the activity of the K ir channel is enhanced by the PKC pathway.
Assuntos
Aorta Torácica , Músculo Liso Vascular , Proteína Quinase C , Simendana , Vasodilatação , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Simendana/farmacologia , Masculino , Vasodilatação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteína Quinase C/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Camundongos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Vasodilatadores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Bloqueadores dos Canais de Potássio/farmacologiaRESUMO
Dual-specificity tyrosine phosphorylation-regulated kinase A (DYRK1A) is a potential drug target for diabetes. The DYRK1A inhibitor can promote ß cells proliferation, increase insulin secretion and reduce blood sugar in diabetes. In this paper, a series ß-carboline-cinnamic acid skeletal derivatives were designed, synthesized and evaluated to inhibit the activity of DYRK1A and promote pancreatic islet ß cell proliferation. Pharmacological activity showed that all of the compounds could effectively promote pancreatic islet ß cell proliferation at a concentration of 1 µM, and the cell viability of compound A1, A4 and B4 reached to 381.5 %, 380.2 % and 378.5 %, respectively. Compound A1, A4 and B4 could also inhibit the expression of DYRK1A better than positive drug harmine. Further mechanistic studies showed that compound A1, A4 and B4 could inhibit DYRK1A protein expression via promoting its degradation and thus enhancing the expression of proliferative proteins PCNA and Ki67. Molecular docking showed that ß-carboline scaffold of these three compounds was fully inserted into the ATP binding site and formed hydrophobic interactions with the active pocket. Besides, these three compounds were predicted to possess better drug-likeness properties using SwissADME. In conclusion, compounds A1, A4 and B4 were potent pancreatic ß cell proliferative agents as DYRK1A inhibitors and might serve as promising candidates for the treatment of diabetes.
Assuntos
Carbolinas , Proliferação de Células , Cinamatos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Quinases Dyrk , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Carbolinas/farmacologia , Carbolinas/química , Carbolinas/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Estrutura Molecular , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/síntese química , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Humanos , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Sobrevivência Celular/efeitos dos fármacosRESUMO
Cardiomyocyte apoptosis is an important cause of trauma-induced secondary cardiac injury (TISCI), in which the endoplasmic reticulum stress (ERS)-mediated apoptosis signaling pathway is known to be first activated, but the mechanism remains unclear. In this study, rat models of traumatic injury are established by using the Noble-Collip trauma device. The expression of glucose-regulating protein 78 (GRP78, a molecular chaperone of the cardiomyocyte ER), acetylation modification of GRP78 and apoptosis of cardiomyocytes are determined. The results show that ERS-induced GRP78 elevation does not induce cardiomyocyte apoptosis in the early stage of trauma. However, with prolonged ERS, the GRP78 acetylation level is elevated, and the apoptosis of cardiomyocytes also increases significantly. In addition, in the early stage of trauma, the expression of histone acetyl-transferase (HAT) P300 is increased and that of histone deacetylase 6 (HDAC6) is decreased in cardiomyocytes. Inhibition of HDAC function could induce the apoptosis of traumatic cardiomyocytes by increasing the acetylation level of GRP78. Our present study demonstrates for the first time that post-traumatic protracted ERS can promote cardiomyocyte apoptosis by increasing the acetylation level of GRP78, which may provide an experimental basis for seeking early molecular events of TISCI.
Assuntos
Traumatismos Cardíacos , Miócitos Cardíacos , Animais , Ratos , Acetilação , Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Miócitos Cardíacos/metabolismoRESUMO
ABSTRACT: Epidemic of obesity accelerates the increase in the number of patients with obesity cardiomyopathy. Thioredoxin interacting protein (TXNIP) has been implicated in the pathogenesis of multiple cardiovascular diseases. However, its specific role in obesity cardiomyopathy is still not well understood. Here, we evaluated the role of TXNIP in obesity-induced cardiomyopathy by feeding wild-type and txnip gene knockout mice with either normal diet or high-fat diet (HFD) for 24 weeks. Our results suggested that TXNIP deficiency improved mitochondrial dysfunction via reversing the shift from mitochondrial fusion to fission in the context of chronic HFD feeding, thus promoting cardiac fatty acid oxidation to alleviate chronic HFD-induced lipid accumulation in the heart, and thereby ameliorating the cardiac function in obese mice. Our work provides a theoretical basis for TXNIP exerting as a potential therapeutic target for the interventions of obesity cardiomyopathy.
Assuntos
Cardiomiopatias , Dieta Hiperlipídica , Camundongos , Animais , Técnicas de Inativação de Genes , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Cardiomiopatias/genética , Cardiomiopatias/prevenção & controle , Obesidade/genética , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMO
Thioredoxin interacting protein (TXNIP) is a potential drug target for type 2 diabetes mellitus (T2DM) treatment. A series of quinazoline derivatives were designed, synthesised, and evaluated to inhibit TXNIP expression and protect from palmitate (PA)-induced ß cell injury. In vitro cell viability assay showed that compounds D-2 and C-1 could effectively protect ß cell from PA-induced apoptosis, and subsequent results showed that these two compounds decreased TXNIP expression by accelerating its protein degradation. Mechanistically, compounds D-2 and C-1 reduced intracellular reactive oxygen species (ROS) production and modulated TXNIP-NLRP3 inflammasome signalling, and thus alleviating oxidative stress injury and inflammatory response under PA insult. Besides, these two compounds were predicted to possess better drug-likeness properties using SwissADME. The present study showed that compounds D-2 and C-1, especially compound D-2, were potent pancreatic ß cell protective agents to inhibit TXNIP expression and might serve as promising lead candidates for the treatment of T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Linhagem Celular , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologiaRESUMO
Obesity-related cardiovascular diseases are associated with overactivation of the renin-angiotensin system (RAS). However, the underlying mechanisms remain elusive. In this study, we investigate the role of angiotensin II (Ang II) in high-fat diet (HFD)-induced cardiac dysfunction by focusing on cardiac glucose and lipid metabolism and energy supply. Ang II plays a role in cardiovascular regulation mainly by stimulating angiotensin II type 1 receptor (AT1R), among which AT1aR is the most important subtype in regulating the function of the cardiovascular system. AT1aR gene knockout (AT1aR â/â) rats and wild-type (WT) rats are randomly divided into four groups and fed with either a normal diet (ND) or a HFD for 12 weeks. The myocardial lipid content, Ang II level and cardiac function are then evaluated. The expressions of a number of genes involved in glucose and fatty acid oxidation and mitochondrial dynamics are measured by quantitative polymerase chain reaction and western blot analysis. Our results demonstrate that AT1aR knockout improves HFD-induced insulin resistance and dyslipidemia as well as lipid deposition and left ventricular dysfunction compared with WT rats fed a HFD. In addition, after feeding with HFD, AT1aR â/â rats not only show further improvement in glucose and fatty acid oxidation but also have a reverse effect on increased mitochondrial fission proteins. In conclusion, AT1aR deficiency ameliorates HFD-induced cardiac dysfunction by enhancing glucose and fatty acid oxidation, regulating mitochondrial dynamics-related protein changes, and further promoting cardiac energy supply.
Assuntos
Cardiopatias , Receptor Tipo 1 de Angiotensina , Animais , Ratos , Angiotensina II/metabolismo , Dieta Hiperlipídica , Ácidos Graxos , Glucose , Metabolismo dos Lipídeos/genética , Lipídeos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismoRESUMO
Myocardial infarction (MI) results in high mortality. The size of fibrotic scar tissue following MI is an independent predictor of MI outcomes. Thioredoxin-interacting protein (TXNIP) is involved in various fibrotic diseases. Its role in post-MI cardiac fibrosis, however, remains poorly understood. In the present study, we investigate the biological role of TXNIP in post-MI cardiac fibrosis and the underlying mechanism using mouse MI models of the wild-type (WT), Txnip-knockout ( Txnip-KO) type and Txnip-knock-in ( Txnip-KI) type. After MI, the animals present with significantly upregulated TXNIP levels, and their fibrotic areas are remarkably expanded with noticeably impaired cardiac function. These changes are further aggravated under Txnip-KI conditions but are ameliorated in Txnip-KO animals. MI also leads to increased protein levels of the fibrosis indices Collagen I, Collagen III, actin alpha 2 (ACTA2), and connective tissue growth factor (CTGF). The Txnip-KI group exhibits the highest levels of these proteins, while the lowest levels are observed in the Txnip-KO mice. Furthermore, Txnip-KI significantly upregulates the levels of transforming growth factor (TGF)B1, p-Smad3, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Cleaved Caspase-1, and interleukin (IL)1B after MI, but these effects are markedly offset by Txnip-KO. In addition, after MI, the Smad7 level significantly decreases, particularly in the Txnip-KI mice. TXNIP may aggravate the progression of post-MI fibrosis and cardiac dysfunction by activating the NLRP3 inflammasome, followed by IL1B generation and then the enhancement of the TGFB1/Smad3 pathway. As such, TXNIP might serve as a novel potential therapeutic target for the treatment of post-MI cardiac fibrosis.
Assuntos
Inflamassomos , Infarto do Miocárdio , Animais , Camundongos , Colágeno , Fibrose , Inflamassomos/metabolismo , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
Autoantibody against the angiotensin II type I receptor (AT1-AA) has been found in the serum of patients with diabetes mellitus (DM). However, it remains unclear whether AT1-AA induces ß-cell apoptosis and participates in the development of DM. In this study, an AT1-AA-positive rat model was set up by active immunization, and AT1-AA IgG was purified. INS-1 cells were treated with AT1-AA, and cell viability, apoptosis, and autophagy-related proteins were detected by Cell Counting Kit-8 assay, flow cytometry, and western blot analysis, respectively. Results showed that existence of AT1-AA impaired the islet function and increased the apoptosis of pancreatic islet cells in rats, and the autophagy level in rat pancreatic islet tissues tended to increase gradually with the prolongation of immunization time. AT1-AA markedly reduced INS-1 cell viability, promoted cell apoptosis, and decreased insulin secretion in vitro. In addition, the autophagy level was gradually increased along with the prolongation of AT1-AA treatment time. Meanwhile, it was determined that treatment with autophagy inhibitor 3-methyladenine and angiotensin II type 1 receptor (AT1R) blocker telmisartan could improve insulin secretion and apoptosis in vitro and in vivo. In conclusion, it is deduced that upregulation of autophagy contributed to the AT1-AA-induced ß-cell apoptosis and islet dysfunction, and AT1R mediated the signal transduction.
Assuntos
Apoptose/efeitos dos fármacos , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Células Secretoras de Insulina/metabolismo , Receptor Tipo 1 de Angiotensina/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Apoptose/imunologia , Autoanticorpos/isolamento & purificação , Autofagia/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Imunização/métodos , Imunoglobulina G/isolamento & purificação , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/imunologia , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Telmisartan/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologiaRESUMO
Elevation of angiotensin II (Ang II) in the serum of patients with diabetes is known to promote apoptosis of islet ß cells, but the underlying mechanism remains unclear. The aim of the present study was to explore the role of Nod-like receptor protein 3 (NLRP3) inflammasome in Ang II-induced apoptosis of pancreatic islet ß cells and investigate the possible underlying mechanism. The effect of Ang II on INS-1 cell (a rat insulinoma cell line) viability was detected by CCK-8 method. The cell apoptosis was detected by flow cytometry and western blot analysis. The effect of Ang II on the expressions of thioredoxin-interacting protein (TXNIP) and NLRP3 protein was detected by western blot analysis. The expression of TXNIP mRNA was detected by real-time polymerase chain reaction. The results showed that Ang II was able to reduce INS-1 cell viability and promote apoptosis and at the same time up-regulate the expressions of TXNIP and NLRP3 components. Ang II-induced apoptosis was inhibited after administration of the NLRP3 inhibitor MCC950, and TXNIP silencing could reduce the NLRP3 expression and apoptosis, while both effects of Ang II on TXNIP-NLRP3 and its apoptosis-inducing effect were inhibited by angiotensin II type I receptor (AT1R) blocker Telmisartan. Our results demonstrated that the TXNIP-NLRP3 inflammasome pathway mediated Ang II-induced INS-1 cell apoptosis and might hopefully become a novel target for the treatment of diabetes mellitus.
Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Inflamassomos/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Apoptose/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Humanos , Inflamassomos/genética , Células Secretoras de Insulina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
This study investigated the effect of angiotensin II (Ang II) on apoptosis and thioredoxin-interacting protein (TXNIP) expression in INS-1 islet cells and the underlying mechanism. INS-1 cells cultured in vitro were treated with different concentration of Ang II for different time, and the viability was measured using cell counting kit-8 (CCK-8). After treatment with 1 × 10-6 mol/L Ang II for 24 h, flow cytometry and Western blot were used to measure the cell apoptosis, and Western blot was used to analyze the protein expression of TXNIP, carbohydrate response element-binding protein (ChREBP) and angiotensin II type 1 receptor (AT1R). Real-time PCR was used to detect TXNIP and ChREBP mRNA expression. IF/ICC was used to observe the TXNIP, ChREBP and AT1R expression. The results showed that Ang II reduced cell viability and induced the expression of TXNIP in a dose- and time-dependent manner (P < 0.05, n = 6) compared with the control group. Ang II induced apoptosis and up-regulated the expression of ChREBP and AT1R (P < 0.05, n = 6). AT1R inhibitor, telmisartan (TM), blocked Ang II-induced TXNIP and ChREBP overexpression (P < 0.05, n = 6) and inhibited Ang II-induced apoptosis. Taken together, Ang II increased ChREBP activation through AT1R, which subsequently increased TXNIP expression and promoted cell apoptosis. These findings suggest a therapeutic potential of targeting TXNIP in preventing Ang II-induced INS-1 cell apoptosis in diabetes.
Assuntos
Angiotensina II/farmacologia , Apoptose , Proteínas de Transporte/fisiologia , Células Secretoras de Insulina/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular , Ratos , Receptor Tipo 1 de Angiotensina/fisiologia , Telmisartan/farmacologia , Regulação para CimaRESUMO
Diabetes can cause a significant increase in the expression of thioredoxin (Trx)-interacting protein (TXNIP), which binds to Trx and inhibits its activity. The present study was aimed to investigate the effect of TXNIP on proliferation of rat INS-1 islet ß cells and the underlying mechanism. TXNIP overexpressing adenovirus vectors (Ad-TXNIP-GFP and Ad-TXNIPc247s-GFP) were constructed and used to infect INS-1 cells. Ad-TXNIPc247s-GFP vector carries a mutant C247S TXNIP gene, and its expression product (TXNIPc247s) cannot attach and inhibit Trx activity. The expression of TXNIP was detected by real-time PCR and Western blot. EdU and Ki67 methods were used to detect cell proliferation. Protein phosphorylation levels of ERK and AKT were detected by Western blot. The results showed that both TXNIP and TXNIPc247s protein overexpressions inhibited the proliferation of INS-1 cells, and the former's inhibitory effect was greater. Moreover, both of the two kinds of overexpressions inhibited the phosphorylation of ERK and AKT. These results suggest that TXNIP overexpression may inhibit the proliferation of INS-1 cells through Trx-dependent and non-Trx-dependent pathways, and the mechanism involves the inhibition of ERK and AKT phosphorylation.
Assuntos
Proteínas de Transporte/fisiologia , Vetores Genéticos , Células Secretoras de Insulina/citologia , Adenoviridae , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Diabetes Mellitus , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Oxirredução , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , RatosRESUMO
Thioredoxin (Trx) interacting protein (TXNIP) is a Trx-binding protein that inhibits the antioxidative function of Trx and is highly expressed in the serum and tissue samples from diabetes patients. This study was to explore whether TXNIP overexpression could cause INS-1 cell autophagy under normal glucose and lipid concentrations, and to analyze the role of autophagy in the apoptosis of INS-1 cells. The INS-1 cells cultured under normal conditions were divided into three groups: normal control, empty adenovirus vector (Ad-eGFP) and TXNIP overexpression (Ad-TXNIP-eGFP) groups. Forty-eight hours after transfection, the expression levels of TXNIP mRNA and protein were measured. Western blot was used to examine the protein expression levels of Beclin-1 and P62, as well as LC3-II/LC3-I ratio, which are associated with autophagy. IF/ICC was used to measure the autophagosome. In addition, the cleaved caspase-3/caspase-3 ratio, the apoptosis marker, was also measured, and the apoptotic rates were detected by flow cytometry (FCM). The results showed that the TXNIP mRNA and protein levels were significantly up-regulated in Ad-TXNIP-eGFP group, suggesting that TXNIP overexpression model was successfully established. In Ad-TXNIP-eGFP group, the protein levels of Beclin-1 and LC3-II/LC3-I ratio were increased, while the protein expression of P62 was decreased, compared with those in Ad-eGFP group. Red fluorescent intensity, representing autophagy level, was higher in Ad-TXNIP-eGFP group than that in Ad-eGFP group. These results suggested that TXNIP overexpression can significantly promote INS-1 cell autophagy. Meanwhile, cleaved caspase 3/caspase 3 ratio and the number of apoptotic cells were significantly increased in Ad-TXNIP-eGFP group. The inhibitor of autophagy, 3-MA, reduced TXNIP overexpression-induced apoptosis in INS-1 cells. Taken together, our data demonstrate that autophagy appears to be an important pathway in TXNIP overexpression-induced apoptosis in INS-1 cells.
Assuntos
Apoptose , Autofagia , Proteínas de Transporte/metabolismo , Ilhotas Pancreáticas/citologia , Proteínas de Transporte/genética , Caspase 3/metabolismo , Linhagem Celular , Humanos , TransfecçãoRESUMO
Cardiac complications are the leading cause of death in diabetes. However, the mechanism of diabetes in inducing myocardial injury and apoptosis, and whether the thioredoxin (Trx) system is involved remain unclear. In this study, male Sprague-Dawley rats were randomly divided into two groups: the control and the diabetes groups, and then were randomly divided into five different timepoints (the 1st, 2nd, 4th, 12th, and 24th week). The results showed that diabetes-induced cardiac injury was enhanced in the type 2 diabetes rats, as evidenced by aggravated cardiac dysfunction, biochemical indicators, and increased myocardial apoptosis (TUNEL and caspase-3 activity). The activity of myocardial Trx and Trx reductase (TR) in diabetic rats was significantly decreased from the second week and continually aggravated with the disease progression. In diabetic rats, the mRNA expression of Trx1, Trx2, TR1, and TR2 was decreased first and then increased after the fourth week. Meanwhile, the protein expression of these Trx system members was significantly increased at the 12th week. Trx nitration was cleared, the Trx/ASK1 interaction was significantly decreased, and the activity of p38 was significantly enhanced in cardiac tissues at the 12th week. These results demonstrated that diabetes may cause myocardial injury and apoptosis, and the extent of which was accompanied with the development of the disease. The mechanism is associated with the development of diabetes and the decreased activity of Trx and TR. The reasons for decreased Trx activity may include: decrease of Trx and TR protein expression; nitration modification of Trx; and up-regulation of TXNIP expression.
Assuntos
Apoptose , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Miócitos Cardíacos/patologia , Tiorredoxinas/metabolismo , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Estreptozocina , Tiorredoxinas/genéticaRESUMO
AIMS: The impact of e-cigarettes/vaping on cardiac function remains contradictory owing to insufficient direct evidence of interorgan communication. Extracellular vesicles (EVs) have protective or detrimental effects depending on pathological conditions, making it crucial to understand their role in lung-cardiac cell interactions mediated by vaping inhalation. METHODS AND KEY FINDINGS: Pulmonary EVs were characterized from animals that underwent 12 weeks of nicotine inhalation (vaping component) (EVsNicotine) or vehicle control (EVsVehicle). EVsNicotine significantly increased in size and abundance compared with EVsVehicle. The direct effect of EVs Nicotine and EVs Vehicle on cardiomyocytes was then assessed in vitro and in vivo. EVs Nicotine led to a decrease in cardiac function as manifested by reduced cardiac contractility and impaired relaxation. EVs Nicotine induced increased levels of cleaved caspase-1 and cleaved caspase-11 in cardiomyocytes, indicating the promotion of pyroptosis. Meanwhile, EVsNicotine stimulated the secretion of fibrotic factors. Further analysis revealed that nicotine inhalation stimulated EVs Nicotine enriched with high levels of ERK5 (EVs Nicotine-ERK5). It was discovered that these EVs derived from pulmonary epithelial cells. Furthermore, inhibiting cardiac ERK5 blunted the EVs Nicotine-induced pyroptosis and fibrotic factor secretion. We further identified GATA4, a pro-pyroptosis transcription factor, as being activated through ERK5-dependent phosphorylation. SIGNIFICANCE: Our research demonstrates that nicotine inhalation exacerbates cardiac injury through the activation of EVs derived from the lungs during e-cigarettes/vaping. Specifically, the EVs containing ERK5 play a crucial role in mediating the detrimental effects on cardiac function. This research provides new insights into the cardiac toxicity of vaping and highlights the role of EVs Nicotine-ERK5 in this process.
RESUMO
T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8-/- mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8-/- mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8-/- mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14-28 were much weaker than those of DCPC on Days 3-28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.
Assuntos
Astrócitos , Lesões Encefálicas Traumáticas , Dióxido de Carbono , Camundongos Endogâmicos C57BL , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Dióxido de Carbono/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Recuperação de Função Fisiológica/fisiologiaRESUMO
Adenovirus transfection technique was used in the current study to show if thioredoxin-interacting protein (TXNIP) overexpression can induce cell apoptosis and injury in H9C2 cardiomyocytes cultured in normal glucose condition. And the mechanisms were then investigated. Briefly, H9C2 cardiomyocytes in logarithmic growth phase were randomly divided into three groups: normal cultured group, empty adenovirus vector group (Ad-eGFP) and TXNIP overexpression group (Ad-TXNIP-eGFP). All cells were cultured in DMEM containing normal concentration of glucose (5 mmol/L) and lipid. 72 h after adenovirus transfection, cells and culture mediums were collected for further assay. The results showed that Ad-eGFP and Ad-TXNIP-eGFP adenovirus transfected H9C2 cells successfully, and the transfection efficiency reached the peak at 72 h. Compared with Ad-eGFP group, Ad-TXNIP-eGFP transfection significantly increased TXNIP mRNA (P < 0.05) and protein expression level (P < 0.01). TXNIP overexpression induced remarkable cell apoptosis and injury as evidenced by increased caspase-3 activity (P < 0.05), apoptotic rate (P < 0.01) and LDH activity (P < 0.01). To further analysis the mechanisms of TXNIP-induced cell apoptosis, we also determined Trx activity, Trx related free radical injury and p38 kinase activation, which are involved in free radical induced apoptosis. The results showed that, compared with those in Ad-eGFP group, Trx activity was significantly decreased (P < 0.01), while malondialdehyde (MDA), 3-nitrotyrosine contents and p38 kinase activity were significantly increased (P < 0.01) in TXNIP overexpression group. These results suggest that TXNIP overexpression alone can induce severe apoptosis and injury in H9C2 cardiomyocytes even they are cultured in normal glucose and lipid concentration conditions. The mechanism involved is that overexpressed TXNIP can bind and inhibit Trx, impairs its antioxidative and antiapoptotic function, and then increases free radical induced injury and p38 kinase dependent apoptosis.
Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Miócitos Cardíacos/citologia , Adenoviridae/genética , Animais , Proteínas de Transporte/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Vetores Genéticos , Ratos , Tiorredoxinas/metabolismoRESUMO
Ulcerative colitis (UC) is evolving into a global burden with a substantially increasing incidence in developing countries. It is characterized by inflammation confined to mucosa and is recognized as an intestinal barrier disease. The intestinal microbiota plays a crucial role in UC pathogenesis. N. commune has long been appreciated as a healthy food and supplement worldwide and polysaccharides account for 60%. Here, we examined the amelioration of N. commune polysaccharides against acute colitis in mice induced by DSS and assessed the mediating role of gut microbiota. An integrated analysis of microbiome, metabolomics, and transcriptomics fully elaborated it markedly enhanced intestinal mucosal barrier function, including: increasing the relative abundance of Akkermansia muciniphila, uncultured_bacterium_g__norank_f__Muribaculaceae, and unclassified_g__norank_f__norank_o__Clostridia_UCG-014; decreasing microbiota-derived phosphatidylcholines and thromboxane 2 levels mapped to arachidonic acid metabolism; improving mucin2 biosynthesis and secretion; enhancing ZO-1 and occludin expression; reducing neutrophil infiltration; regulating the level of colitis-related inflammatory cytokines; involving inflammation and immune function-associated signaling pathways. Further, the mediation effect of gut microbiota was evaluated by administering a cocktail of antibiotics. In conclusion, our results demonstrated that N. commune polysaccharides predominantly reinforced the gut microbiota-mediated intestinal mucosal barrier to confer protection against UC and exhibited dramatic prebiotic-like functions, providing an alternative or complementary treatment for UC.
Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Nostoc commune , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Inflamação , Suplementos Nutricionais , Firmicutes , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , ColoRESUMO
The synergy between radiotherapy and immunotherapy in treating thoracic cancers presents a potent therapeutic advantage, yet it also carries potential risks. The extent and nature of cumulative cardiac toxicity remain uncertain, prompting the need to discern its mechanisms and devise effective mitigation strategies. Radiation alone or in combination with an anti- Programmed cell death protein1 (PD-1) antibody significantly reduced cardiac function in C57BL/6J mice, and this pathologic effect was aggravated by anti-PD-1 (anti-PD-1 + radiation). To examine the cellular mechanism that causes the detrimental effect of anti-PD-1 upon cardiac function after radiation, AC16 human cardiomyocytes were used to study cardiac apoptosis and cardiac autophagy. Radiation-induced cardiomyocyte apoptosis was significantly promoted by anti-PD-1 treatment, while anti-PD-1 combined radiation administration blocked the cardiac autophagic flux. Adenosine 5'-triphosphate (ATP) (a molecule that promotes lysosomal acidification) not only improved autophagic flux in AC16 human cardiomyocytes, but also attenuated apoptosis induced by radiation and anti-PD-1 treatment. Finally, ATP administration in vivo significantly reduced radiation-induced and anti-PD-1-exacerbated cardiac dysfunction. We demonstrated for the first time that anti-PD-1 can aggravate radiation-induced cardiac dysfunction via promoting cardiomyocyte apoptosis without affecting radiation-arrested autophagic flux. ATP enhanced cardiomyocyte autophagic flux and inhibited apoptosis, improving cardiac function in anti-PD-1/radiation combination-treated animals.
RESUMO
AIMS: The renin-angiotensin system (RAS) is over-activated and the serum angiotensin II (Ang II) level increased in obese patients, while their correlations were incompletely understood. This study aims to explore the role of Ang II in diet-induced obesity by focusing on adipose lipid anabolism and catabolism. METHODS: Rat model of AT1aR gene knockout were established to investigate the special role of Ang II on adipose lipid metabolism. Wild-type (WT) and AT1aR gene knockout (AT1aR-/-) SD rats were fed with normal diet or high-fat diet for 12 weeks. Adipose morphology and adipose lipid synthesis and lipolysis were examined. RESULTS: AT1aR deficiency activated lipolysis-related enzymes and increased the levels of NEFAs and glycerol released from adipose tissue in high-fat diet rats, while did not affect triglycerides synthesis. Besides, AT1aR knockout promoted energy expenditure and fatty acids oxidation in adipose tissue. cAMP levels and PKA phosphorylation in the adipose tissue were significantly increased in AT1aR-/- rats fed with high-fat. Activated PKA could promote adipose lipolysis and thus improved adipose histomorphology and insulin sensitivity in high-fat diet rats. CONCLUSIONS: AT1aR deficiency alleviated adipocyte hypertrophy in high-fat diet rats by promoting adipose lipolysis probably via cAMP/PKA pathway, and thereby delayed the onset of obesity and related metabolic diseases.
Assuntos
Dieta Hiperlipídica , Lipólise , Obesidade , Receptor Tipo 1 de Angiotensina , Tecido Adiposo/metabolismo , Angiotensina II/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Técnicas de Inativação de Genes , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genéticaRESUMO
Background: Myocardial infarction (MI) is a common cause of death. Thioredoxin-interacting protein (TXNIP) expression increases after MI, and it exerts a negative regulatory effect on cardiac function after MI. Our study aimed to investigate the specific regulatory mechanism of TXNIP on angiogenesis and cardiomyocyte apoptosis after MI. Methods: The TXNIP gene knock-in (TXNIP-KI) and knock-out (TXNIP-KO) mice were generated, respectively. Eight-week-old male TXNIP-KO, TXNIP-KI, and wild type (WT) mice were subjected to MI by permanent ligation of the left anterior descending artery. Cardiomyocyte apoptosis was detected by TUNEL assay on the 4th post-surgery day. The expressions of TXNIP, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), phosphorylated protein kinase B (p-AKT), p-AMP-activated protein kinase (p-AMPK), cleaved caspase-3, and caspase-3 were detected by Western blot. Quantitative real-time PCR was performed to detect the expression of TXNIP, HIF-1α, VEGF, prolyl hydroxylase (PHD) 1, and factor inhibiting HIF (FIH). In addition, the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were also measured. On day 7 after MI, the hearts of sacrificed animals were analyzed by immunohistochemistry to assess CD31 expression and determine the density of angiogenesis. One month after treatment, the cardiac functional and structural changes were determined by echocardiography and the level of myocardial fibrosis was observed by Masson staining. Results: Compared with WT mice, TXNIP-KO mice had a significantly improved cardiac functional recovery after MI, and the proportion of myocardial fibrosis area was dramatically reduced, cardiomyocyte apoptosis was decreased, and angiogenesis was significantly increased; TXNIP-KI mice reversed in these changes. The expression of HIF-1α, p-AKT, and p-AMPK increased after MI in TXNIP-KO mice, and the mRNA expression of PHD 1 and FIH decreased. TXNIP-KI mice reversed in these changes. Conclusions: After MI, TXNIP down-regulated the level of HIF-1α and VEGF, reduced the number of angiogenesis, increased cardiomyocyte apoptosis, and ultimately led to a poor prognosis of ischemic myocardium. TXNIP was a protein with negative effects after MI and was expected to be a target for the prevention and treatment of MI.