Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 18(2): 389-401, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31278885

RESUMO

Landraces often contain genetic diversity that has been lost in modern cultivars, including alleles that confer enhanced local adaptation. To comprehensively identify loci associated with adaptive traits in soya bean landraces, for example flowering time, a population of 1938 diverse landraces and 97 accessions of the wild progenitor of cultivated soya bean, Glycine soja was genotyped using tGBS® . Based on 99 085 high-quality SNPs, landraces were classified into three sub-populations which exhibit geographical genetic differentiation. Clustering was inferred from STRUCTURE, principal component analyses and neighbour-joining tree analyses. Using phenotypic data collected at two locations separated by 10 degrees of latitude, 17 trait-associated SNPs (TASs) for flowering time were identified, including a stable locus Chr12:5914898 and previously undetected candidate QTL/genes for flowering time in the vicinity of the previously cloned flowering genes, E1 and E2. Using passport data associated with the collection sites of the landraces, 27 SNPs associated with adaptation to three bioclimatic variables (temperature, daylength, and precipitation) were identified. A series of candidate flowering genes were detected within linkage disequilibrium (LD) blocks surrounding 12 bioclimatic TASs. Nine of these TASs exhibit significant differences in flowering time between alleles within one or more of the three individual sub-populations. Signals of selection during domestication and/or subsequent landrace diversification and adaptation were detected at 38 of the 44 flowering and bioclimatic TASs. Hence, this study lays the groundwork to begin breeding for novel environments predicted to arise following global climate change.


Assuntos
Adaptação Fisiológica , Genes de Plantas , Estudo de Associação Genômica Ampla , Glycine max , Adaptação Fisiológica/genética , Alelos , Genes de Plantas/genética , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Glycine max/genética
2.
Int J Mol Sci ; 19(12)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544851

RESUMO

Plant R2R3-MYB transcription factors (TFs) have been suggested to play crucial roles in the response to diverse abiotic and biotic stress factors but there is little molecular evidence of this role in soybean plants. In this work, we identified and functionally characterized an R2R3-MYB TF, namely, GsMYB15, from the wild soybean ED059. Protein and promoter sequence analysis indicated that GsMYB15 is a typical R2R3-MYB TF and contains multiple stress-related cis-elements in the promoter region. GsMYB15 is located in the nucleus and exhibits transcriptional activation activity. QPCR assays suggested that the expression of GsMYB15 could be induced by NaCl, insect attacks and defense-related hormones (MeJA and SA). Furthermore, GsMYB15 exhibited highest expression in pods compared to other tissues. Functional analysis of GsMYB15 demonstrated that overexpression of GsMYB15 could increase salt tolerance and enhance the resistance to H. armigera larvae in transgenic Arabidopsis plants. Moreover, overexpression of GsMYB15 also affected the expression levels of salt stress- and defense-related genes in the transgenic plants. Feeding with transgenic Arabidopsis plant leaves could significantly suppress the expression levels of immunity-related genes in H. armigera larvae. Overexpression of GsMYB15 also increased mesophyll cell levels in transgenic plants. Taken together, these results provide evidence that GsMYB15 is a positive regulator of salt stress tolerance and insect resistance in transformed Arabidopsis plants.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , Glycine max/metabolismo , Mariposas/fisiologia , Proteínas de Plantas/metabolismo , Estresse Salino , Fatores de Transcrição/metabolismo , Acetatos/farmacologia , Sequência de Aminoácidos , Animais , Arabidopsis/imunologia , Arabidopsis/fisiologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Oxilipinas/farmacologia , Filogenia , Imunidade Vegetal/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ácido Salicílico/farmacologia , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional/genética
3.
Int J Mol Sci ; 18(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832544

RESUMO

Sucrose non-fermenting-1 (SNF1)-related protein kinase 2s (SnRK2s) that were reported to be involved in the transduction of abscisic acid (ABA) signaling, play important roles in response to biotic and abiotic stresses in plants. Compared to the systemic investigation of SnRK2s in Arabidopsisthaliana and Oryza sativa, little is known regarding SnRK2s in soybean, which is one of the most important oil and protein crops. In the present study, we performed genome-wide identification and characterization of GmSnRK2s in soybean. In summary, 22 GmSnRK2s were identified and clustered into four groups. Phylogenetic analysis indicated the expansion of SnRK2 gene family during the evolution of soybean. Various cis-acting elements such as ABA Response Elements (ABREs) were identified and analyzed in the promoter regions of GmSnRK2s. The results of RNA sequencing (RNA-Seq) data for different soybean tissues showed that GmSnRK2s exhibited spatio-temporally specific expression patterns during soybean growth and development. Certain GmSnRK2s could respond to the treatments including salinity, ABA and strigolactones. Our results provide a foundation for the further elucidation of the function of GmSnRK2 genes in soybean.


Assuntos
Glycine max/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Salinidade , Glycine max/efeitos dos fármacos , Glycine max/enzimologia , Glycine max/metabolismo , Estresse Fisiológico
4.
Cell Res ; 16(3): 267-76, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16541125

RESUMO

During vegetative development, higher plants continuously form new leaves in regular spatial and temporal patterns. Mutants with abnormal leaf developmental patterns not only provide a great insight into understanding the regulatory mechanism of plant architecture, but also enrich the ways to its modification by which crop yield could be improved. Here, we reported the characterization of the rice leafy-head2 (lhd2) mutant that exhibits shortened plastochron, dwarfism, reduced tiller number, and failure of phase transition from vegetative to reproductive growth. Anatomical and histological study revealed that the rapid emergence of leaves in lhd2 was resulted from the rapid initiation of leaf primordia whereas the reduced tiller number was a consequence of the suppression of the tiller bud outgrowth. The molecular and genetic analysis showed that LHD2 encodes a putative RNA binding protein with 67% similarity to maize TE1. Comparison of genome-scale expression profiles between wild-type and lhd2 plants suggested that LHD2 may regulate rice shoot development through KNOX and hormone-related genes. The similar phenotypes caused by LHD2 mutation and the conserved expression pattern of LHD2 indicated a conserved mechanism in controlling the temporal leaf initiation in grass.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Mutação , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Brotos de Planta/genética , Proteínas de Ligação a RNA/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA