Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 154(6): 064502, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588539

RESUMO

In this work, the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach was applied to calculate the 13C and 1H nuclear magnetic resonance (NMR) chemical shifts in molecular crystals. Two benchmark sets of molecular crystals were selected to calculate the NMR chemical shifts. Systematic investigation was conducted to examine the convergence of AF-QM/MM calculations and the impact of various density functionals with different basis sets on the NMR chemical shift prediction. The result demonstrates that the calculated NMR chemical shifts are close to convergence when the distance threshold for the QM region is larger than 3.5 Å. For 13C chemical shift calculations, the mPW1PW91 functional is the best density functional among the functionals chosen in this study (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB98, and OPBE), while the OB98 functional is more suitable for the 1H NMR chemical shift prediction of molecular crystals. Moreover, with the B3LYP functional, at least a triple-ζ basis set should be utilized to accurately reproduce the experimental 13C and 1H chemical shifts. The employment of diffuse basis functions will further improve the accuracy for 13C chemical shift calculations, but not for the 1H chemical shift prediction. We further proposed a fragmentation scheme of dividing the central molecule into smaller fragments. By comparing with the results of the fragmentation scheme using the entire central molecule as the core region, the AF-QM/MM calculations with the fragmented central molecule can not only achieve accurate results but also reduce the computational cost. Therefore, the AF-QM/MM approach is capable of predicting the 13C and 1H NMR chemical shifts for molecular crystals accurately and effectively, and could be utilized for dealing with more complex periodic systems such as macromolecular polymers and biomacromolecules. The AF-QM/MM program for molecular crystals is available at https://github.com/shiman1995/NMR.

2.
Proc Natl Acad Sci U S A ; 115(41): 10257-10262, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237285

RESUMO

We present a hybrid metageneralized-gradient-approximation functional, revM06, which is based on adding Hartree-Fock exchange to the revM06-L functional form. Compared with the original M06 suite of density functionals, the resulting revM06 functional has significantly improved across-the-board accuracy for both main-group and transition-metal chemistry. The revM06 functional improves on the M06-2X functional for main-group and transition-metal bond energies, atomic excitation energies, isomerization energies of large molecules, molecular structures, and both weakly and strongly correlated atomic and molecular data, and it shows a clear improvement over M06 and M06-2X for noncovalent interactions, including smoother potential curves for rare-gas dimers. The revM06 functional also predicts more accurate results than M06 and M06-2X for most of the outside-the-training-set test sets examined in this study. Therefore, the revM06 functional is well-suited for a broad range of chemical applications for both main-group and transition-metal elements.

3.
Molecules ; 26(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361639

RESUMO

Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Rodopsinas Microbianas/química , Eletricidade Estática
4.
Proc Natl Acad Sci U S A ; 114(32): 8487-8492, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739954

RESUMO

We present the revM06-L functional, which we designed by optimizing against a larger database than had been used for Minnesota 2006 local functional (M06-L) and by using smoothness restraints. The optimization strategy reduced the number of parameters from 34 to 31 because we removed some large terms that increased the required size of the quadrature grid and the number of self-consistent-field iterations. The mean unsigned error (MUE) of revM06-L on 422 chemical energies is 3.07 kcal/mol, which is improved from 3.57 kcal/mol calculated by M06-L. The MUE of revM06-L for the chemical reaction barrier height database (BH76) is 1.98 kcal/mol, which is improved by more than a factor of 2 with respect to the M06-L functional. The revM06-L functional gives the best result among local functionals tested for the noncovalent interaction database (NC51), with an MUE of only 0.36 kcal/mol, and the MUE of revM06-L for the solid-state lattice constant database (LC17) is half that for M06-L. The revM06-L functional also yields smoother potential curves, and it predicts more-accurate results than M06-L for seven out of eight diversified test sets not used for parameterization. We conclude that the revM06-L functional is well suited for a broad range of applications in chemistry and condensed-matter physics.

5.
Angew Chem Int Ed Engl ; 59(28): 11550-11555, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32167638

RESUMO

Full quantum mechanical (FQM) calculation of the excited state of aggregation-induced-emission (AIE) materials is highly sought but still a challenging task. Herein, we employed the recently developed electrostatically embedded generalized molecular fractionation (EE-GMF) method, a method based on the systematic fragmentation approach, to predict, for the first time, the spectra of a prototype AIE fluorophore: di(p-methoxylphenyl)dibenzofulvene (FTPE). Compared to the single molecular or QM/MM calculations, the EE-GMF method shows significantly improved accuracy, nearly reproducing the experimental optical spectra of FTPE in both condensed phases. Importantly, we show that the conventional restriction of the intramolecular rotation mechanism cannot fully account for AIE, whereas the two-body intermolecular quantum mechanical interaction plays a crucial role in AIE.

6.
J Am Chem Soc ; 141(50): 19888-19901, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31756090

RESUMO

Although the rapid development of sensitivity-enhanced solid-state NMR (ssNMR) spectroscopy based on dynamic nuclear polarization (DNP) has enabled a broad range of novel applications in material and life sciences, further methodological improvements are needed to unleash the full potential of DNP-ssNMR. Here, a new methyl-based toolkit for exploring protein structures is presented, which combines signal-enhancement by DNP with heteronuclear Overhauser effect (hetNOE), carbon-carbon-spin diffusion (SD) and strategically designed isotope-labeling schemes. It is demonstrated that within this framework, methyl groups can serve as dynamic sensors for probing local molecular packing within proteins. Furthermore, they can be used as "NMR torches" to selectively enlighten their molecular environment, e.g., to selectively enhance the polarization of nuclei within residues of ligand-binding pockets. Finally, the use of 13C-13C spin diffusion enables probing carbon-carbon distances within the subnanometer range, which bridges the gap between conventional 13C-ssNMR methods and EPR spectroscopy. The applicability of these methods is directly shown on a large membrane protein, the light-driven proton pump green proteorhodopsin (GPR), which offers new insight into the functional mechanism of the early step of its photocycle.

7.
J Phys Chem A ; 121(12): 2503-2514, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28264557

RESUMO

In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , RNA/química , Eletricidade Estática
8.
Sci Adv ; 10(4): eadj0384, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266078

RESUMO

Proteorhodopsins are widely distributed photoreceptors from marine bacteria. Their discovery revealed a high degree of evolutionary adaptation to ambient light, resulting in blue- and green-absorbing variants that correlate with a conserved glutamine/leucine at position 105. On the basis of an integrated approach combining sensitivity-enhanced solid-state nuclear magnetic resonance (ssNMR) spectroscopy and linear-scaling quantum mechanics/molecular mechanics (QM/MM) methods, this single residue is shown to be responsible for a variety of synergistically coupled structural and electrostatic changes along the retinal polyene chain, ionone ring, and within the binding pocket. They collectively explain the observed color shift. Furthermore, analysis of the differences in chemical shift between nuclei within the same residues in green and blue proteorhodopsins also reveals a correlation with the respective degree of conservation. Our data show that the highly conserved color change mainly affects other highly conserved residues, illustrating a high degree of robustness of the color phenotype to sequence variation.


Assuntos
Evolução Biológica , Núcleo Celular , Rodopsinas Microbianas , Glutamina , Norisoprenoides
9.
J Chem Theory Comput ; 16(8): 5174-5188, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551640

RESUMO

Understanding the excited-state properties of luminescent biomolecules is of central importance to their biophysical applications. In this study, we develop the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method for quantitatively characterizing properties of covalently bonded systems with localized excitations (i.e., involving a single chromophore), such as fluorescent proteins. The excitation energy, transition dipole moment, and oscillator strength of wild-type Green Fluorescent Protein (wt-GFP) calculated by EE-GMFCC are found to be in excellent agreement with full system time-dependent density functional theory results. We also applied the Polarized Protein-Specific Charge model to wt-GFP, and found that electronic polarization of the protein is critical in stabilizing hydrogen bonding interactions in wt-GFP, which influences its absorption spectrum. The predicted absorption spectra of wt-GFP in the A and B states qualitatively agree with experiment. The fragmentation approach further allows a straightforward per residue decomposition of the excitation which reveals the influence of the protein environment on the absorption spectra of wt-GFP A and B states. Our results demonstrate that the EE-GMFCC method is both accurate and efficient for excited-state property calculations on proteins.


Assuntos
Proteínas de Fluorescência Verde/química , Teoria Quântica , Ligação de Hidrogênio
10.
Front Chem ; 6: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868556

RESUMO

In this study, the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method was applied for NMR chemical shift calculations of protein-ligand complexes. In the AF-QM/MM approach, the protein binding pocket is automatically divided into capped fragments (within ~200 atoms) for density functional theory (DFT) calculations of NMR chemical shifts. Meanwhile, the solvent effect was also included using the Poission-Boltzmann (PB) model, which properly accounts for the electrostatic polarization effect from the solvent for protein-ligand complexes. The NMR chemical shifts of neocarzinostatin (NCS)-chromophore binding complex calculated by AF-QM/MM accurately reproduce the large-sized system results. The 1H chemical shift perturbations (CSP) between apo-NCS and holo-NCS predicted by AF-QM/MM are also in excellent agreement with experimental results. Furthermore, the DFT calculated chemical shifts of the chromophore and residues in the NCS binding pocket can be utilized as molecular probes to identify the correct ligand binding conformation. By combining the CSP of the atoms in the binding pocket with the Glide scoring function, the new scoring function can accurately distinguish the native ligand pose from decoy structures. Therefore, the AF-QM/MM approach provides an accurate and efficient platform for protein-ligand binding structure prediction based on NMR derived information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA