Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Sci Technol ; 58(25): 11140-11151, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38867458

RESUMO

Microplastic records from lake cores can reconstruct the plastic pollution history. However, the associations between anthropogenic activities and microplastic accumulation are not well understood. Huguangyan Maar Lake (HML) is a deep-enclosed lake without inlets and outlets, where the sedimentary environment is ideal for preserving a stable and historical microplastic record. Microplastic (size: 10-500 µm) characteristics in the HML core were identified using the Laser Direct Infrared Imaging system. The earliest detectable microplastics appeared unit in 1955 (1.1 items g-1). The microplastic abundance ranged from n.d. to 615.2 items g-1 in 1955-2019 with an average of 134.9 items g-1. The abundance declined slightly during the 1970s and then increased rapidly after China's Reform and Opening Up in 1978. Sixteen polymer types were detectable, with polyethylene and polypropylene dominating, accounting for 23.5 and 23.3% of the total abundance, and the size at 10-100 µm accounted for 80%. Socioeconomic factors dominated the microplastic accumulation based on the random forest modeling, and the contributions of GDP per capita, plastic-related industry yield, and total crop yield were, respectively, 13.9, 35.1, and 9.3% between 1955-2019. The total crop yield contribution further increased by 1.7% after 1978. Coarse sediment particles increased with soil erosion exacerbated microplastics discharging into the sediment.


Assuntos
Monitoramento Ambiental , Lagos , Microplásticos , China , Microplásticos/análise , Poluentes Químicos da Água/análise , Plásticos , Sedimentos Geológicos/química
2.
Proc Natl Acad Sci U S A ; 117(13): 7038-7043, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179672

RESUMO

Paleoclimate research has built a framework for Earth's climate changes over the past 65 million years or even longer. However, our knowledge of weather-timescale extreme events (WEEs, also named paleoweather), which usually occur over several days or hours, under different climate regimes is almost blank because current paleoclimatic records rarely provide information with temporal resolution shorter than monthly scale. Here we show that giant clam shells (Tridacna spp.) from the tropical western Pacific have clear daily growth bands, and several 2-y-long (from January 29, 2012 to December 9, 2013) daily to hourly resolution biological and geochemical records, including daily growth rate, hourly elements/Ca ratios, and fluorescence intensity, were obtained. We found that the pulsed changes of these ultra-high-resolution proxy records clearly matched with the typical instrumental WEEs, for example, tropical cyclones during the summer-autumn and cold surges during the winter. When a tropical cyclone passes through or approaches the sampling site, the growth rate of Tridacna shell decreases abruptly due to the bad weather. Meanwhile, enhanced vertical mixing brings nutrient-enriched subsurface water to the surface, resulting in a high Fe/Ca ratio and strong fluorescence intensity (induced by phytoplankton bloom) in the shell. Our results demonstrate that Tridacna shell has the potential to be used as an ultra-high-resolution archive for paleoweather reconstructions. The fossil shells living in different geological times can be built as a Geological Weather Station network to lengthen the modern instrumental data and investigate the WEEs under various climate conditions.


Assuntos
Bivalves/química , Bivalves/crescimento & desenvolvimento , Clima Extremo , Paleontologia/métodos , Animais
3.
Environ Res ; 206: 112570, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922980

RESUMO

Fen River Basin (FRB) is water-deficient and strongly influenced by human activities in the eastern Chinese Loess Plateau. The spatio-temporal variation and controlling factors of hyrochemistry and quality, sources of high boron, sulfate, and nitrate of surface waters in FRB were unclear. Major ions, δ11B, δ15N, and δ18O in surface waters in dry season and wet season of FRB were analyzed and correlation analysis (CA), principal component analysis (PCA), self-organizing map (SOM), forward model, and Bayesian isotope mixing model (MixSIAR) were used to solve above problems. Results showed that average riverine δ11B, δ15N, and δ18O of FRB was 7.8‰, 11.2‰, and 1.3‰ (1SD), respectively. Dissolved solutes ranked midstream > downstream > upstream with water type of Na +-Cl-, Ca2+-Mg2+-Cl-, and Ca2+-HCO3-, respectively. Low dissolved solutes were in forest areas while high values were in cropland and city areas. SOM analysis indicated that hydrochemistry was both influenced by natural (upstream) and pollutional input (midstream and downstream) and variation between dry season and wet season was minor. The abnormally high boron concentrations were mainly from silicate weathering (43%) and evaporites dissolution of loess (32%), urban and industrial input contributed 15% of riverine boron. High SO42- (207 ± 267 mg/L, 1SD) was mainly from sulfates. δ15N and δ18O analysis indicated that nitrification was the primary N cycling process. Further, MixSIAR showed that NO3- was mainly from municipal sewage (∼67%) and the total contribution of chemical fertilizer and soil nitrogen was ∼30% with slightly higher values in upstream and wet season. Influenced by land-use types, evaporite dissolution, and anthropogenic input, water quality below midstream was worse and strict sewage reduction policies must be developed. This study highlights the significant influence of evaporite dissolution of loess and anthropogenic input (urban and industrial input for B and sewage for NO3-) on hydrochemistry and water quality.


Assuntos
Nitratos , Poluentes Químicos da Água , Teorema de Bayes , Boro , China , Monitoramento Ambiental/métodos , Humanos , Nitratos/análise , Sulfatos , Poluentes Químicos da Água/análise
4.
Rapid Commun Mass Spectrom ; 34(3): e8577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31498931

RESUMO

RATIONALE: Lithium (Li) isotopes have increasingly been applied as tracers in Earth and planetary sciences and their effectiveness relies upon accurate and precise Li isotopic data. Nowadays, multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) combined with chromatographic purification is the most common strategy for obtaining Li isotopic ratios in natural samples, with a long-term internal precision better than 0.3‰ in most laboratories. However, there is a large discrepancy in the Li isotopic compositions of the same reference materials determined by MC-ICP-MS among international laboratories (e.g. ca 3.5‰ difference for measurements of homogeneous seawater), which has been attributed to insufficient recovery of Li during chromatographic purification. Despite this recognition, the exact impact of Li recovery during purification on Li isotopic determinations by MC-ICP-MS has never been quantified. METHODS: We employed a normal distribution function to model Li elution curves and quantified the Li isotopic fractionation resulting from Li recovery during chromatographic purification. Furthermore, we compared the calculated and measured relative recovery (R) with the Li isotopic ratios determined by ICP-MS to validate our theoretical calculation. RESULTS: The theoretical calculations showed that R should be higher than 99.8% in order to avoid observable Li isotopic fractionation during chromatographic purification at IEECAS. This idea is further supported by the better long-term external precisions for data with R ≥ 99.8% compared with previous values of 99.5% ≤ R < 99.8%. Our results indicated that the large differences in the reported Li isotopic ratios for homogeneous seawater among international laboratories are probably attributable to Li isotopic fractionation occurring during ion exchange chromatography. CONCLUSIONS: Our theoretical calculation via R is the first quantitative and convenient approach for monitoring Li isotopic fractionation during sample purification, ensuring that R ≥ 99.8% can avoid observable Li isotopic fractionation during purification, which will improve the accuracy of Li isotopic measurements by MC-ICP-MS and the comparability among laboratories.

5.
Rapid Commun Mass Spectrom ; 33(4): 351-360, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30447022

RESUMO

RATIONALE: High-precision determination of magnesium (Mg) isotopes can now be routinely achieved by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The analytical sensitivity and instrumental mass discrimination behavior of this method are, however, sensitive to the types of sample and skimmer cones used in these measurements, so it is important that these parameters should be investigated. METHODS: Using the sample-standard-bracketing method in the wet-plasma mode, four available combinations of sample and skimmer cones [Jet sample cone + H skimmer cone (Jet + H), standard sample cone + H skimmer cone (Standard + H), standard sample cone + X skimmer cone (Standard + X), and Jet sample cone + X skimmer cone (Jet + X)] were systematically investigated for peak shape, sensitivity, mass discrimination, accuracy, and precision in Mg-isotopic ratio determination using a Neptune plus MC-ICP mass spectrometer. RESULTS: The results showed that different cone combinations do not affect peak shapes but would significantly change the sensitivities for Mg-isotopic determinations. Compared with using the Standard + H, the sensitivities of Mg-isotopic determinations were enhanced by approximately a factor of 1.3, 1.4, and 1.9 by using the Standard + X, the Jet + H, and the Jet + X combinations, with the most stable mass discrimination behaviors obtained by the Jet + H. The instrumental mass fractionation slope for any combination of a modified cone geometry (i.e. Standard + X, Jet + X, and Jet + H) is 0.500, while it is 0.510 for the Standard + H. In addition, the mass discrimination behavior is related to Mg concentrations once the combination is set, indicating the necessity of concentration match during Mg-isotopic determination. CONCLUSIONS: The precision and accuracy of the Jet + H combination are better than those of the other combinations, and this is further supported by the validation of the Mg-isotope data for four international reference materials: Cambridge-1, NASS-6, AGV-2, and BHVO-2. As the Jet + H combination also provides a high signal, this combination gives the most robust strategy for the highly precise and accurate determination of Mg isotopes.

6.
Environ Manage ; 53(1): 135-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24221557

RESUMO

The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.


Assuntos
Água Subterrânea/química , Rios/química , Qualidade da Água , China , Conservação dos Recursos Naturais
7.
Sci Total Environ ; 912: 169126, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070570

RESUMO

The three largest acid rain regions of current earth are located in northern and western Europe, eastern North America, and East Asia. Sulfur and nitrate concentrations in headwater streams in Europe and North America decreased as atmospheric sulfur and nitrogen deposition decreased, albeit with a considerable delay. However, how water chemistry responds to the declining sulfur and nitrogen deposition in China is unclear. The regional survey of surface water chemistry during 2010 and 2018 within the Sichuan Basin in southwestern China showed that the recovery of the surface water chemistry was delayed for at least 5 years owing to the release of previously deposited sulfur and nitrogen stored in the soil. After sulfur deposition declined from its peak value, the subregions of purplish soil with low sulfate adsorption capacity still exhibited a net sulfur release in 2010, but this release was no longer evident by 2018. The subregions with the red and yellow soils, which have a high sulfate adsorption capacity, operated as sulfur sinks during 2010 and 2018, indicating a continuous immobilization process through sulfate reduction despite a decrease in sulfur deposition. Additionally, this sulfate reduction countered the release of sulfate caused by sulfur desorption. There was a substantial nitrogen sink within the Sichuan Basin. Nitrogen leaching decreased slowly with the declined nitrogen deposition, except in regions where nitrogen deposition exceeded the critical threshold. Compared to temperate forest regions in Europe, the Sichuan Basin and its surrounding areas have experienced higher decline rates in the leaching of sulfur and nitrogen, highlighting that the subtropical forest region undergoes a faster restoration of surface water chemistry.

8.
Nat Commun ; 15(1): 3364, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641605

RESUMO

Intensification of northern hemisphere glaciation (iNHG), ~2.7 million years ago (Ma), led to establishment of the Pleistocene to present-day bipolar icehouse state. Here we document evolution of orbital- and millennial-scale Asian winter monsoon (AWM) variability across the iNHG using a palaeomagnetically dated centennial-resolution grain size record between 3.6 and 1.9 Ma from a previously undescribed loess-palaeosol/red clay section on the central Chinese Loess Plateau. We find that the late Pliocene-early Pleistocene AWM was characterized by combined 41-kyr and ~100-kyr cycles, in response to ice volume and atmospheric CO2 forcing. Northern hemisphere ice sheet expansion, which was accompanied by an atmospheric CO2 concentration decline, substantially increased glacial AWM intensity  and its orbitally oscillating amplitudes across the iNHG. Superposed on orbital variability, we find that millennial AWM intensity fluctuations persisted during both the warmer (higher-CO2) late Pliocene and colder (lower-CO2) early Pleistocene, in response to both external astronomical forcing and internal climate dynamics.

9.
Sci Total Environ ; 927: 172044, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554953

RESUMO

Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) and phthalates could reflect energy consumption and industrial production adjustment. However, there is limited knowledge about their effects on variations of PAH and phthalate compositions in the sediment core. The PAH and phthalate sedimentary records in Huguangyan Maar Lake in Guangdong, China were constructed, and random forest models were adopted to quantify the associated impact factors. Sums of sixteen PAH (∑16 PAH) and seven phthalate (∑7 PAE) concentrations in the sediment ranged from 28.8 to 1110 and 246-4290 µg/kg dry weight in 1900-2020. Proportions of 5-6 ring PAHs to the ∑16 PAHs increased from 32.0 %-40.7 % in 1900-2020 with increased coal and petroleum consumption, especially after 1980. However, those of 2-3 ring PAHs decreased from 30.7 % to 23.6 % due to the biomass substitution with natural gas. The proportions of bis (2-ethylhexyl) phthalate to the ∑7 PAEs decreased from 52.3 %-29.1 % in 1900-2020, while those of di-isobutyl phthalate increased (13.7 % to 42.3 %). The shift from traditional plasticizers to non-phthalates drove this transformation, though the primary plastic production is increasing. Our findings underscore the effectiveness of optimizing energy structures and updating chemical products in reducing organic pollution in aquatic environments.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Sedimentos Geológicos/química , Lagos/química , Poluentes Químicos da Água/análise , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Desenvolvimento Econômico
10.
Anal Chem ; 85(13): 6248-53, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23718810

RESUMO

A static double-collector system for accurate, precise, and rapid boron isotope analysis has been established by employing a newly fixed Faraday H3 and H4 cup enabling simultaneously collected Cs2BO2(+) ion beams (m/z = 308 and 309) on a Finnigan-MAT Triton thermal ionization mass spectrometer of boron (Triton B). The experimental result indicated that Cs2BO2(+) ion beams (m/z = 308 and 309) were simultaneously collected using a fixed Faraday H3 and H4 cup without using the "Zoom Quad" function and reduced accelerating voltage. Furthermore, the method enabled the measurement of samples containing as little as 20 ng of boron. An analysis of the National Institute of Standards and Technology standard reference material (NIST SRM) 951 standard showed external reproducibility (2RSD) of ±0.013‰, ± 0.013‰, and ±0.019‰ for 100, 50, and 20 ng of boron, respectively. The present method of static multicollection of Cs2BO2(+) ions is applicable to a wide field of boron isotopic research that requires high precision and accuracy to analyze samples with low boron concentrations, including pore fluids, foraminifera, rivers, rainwater, and other natural samples.

11.
Rapid Commun Mass Spectrom ; 27(17): 1919-24, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23939958

RESUMO

RATIONALE: As the trace element strontium (Sr) plays a significant role in dental health, it is important to determine the Sr concentration and isotope composition ((87)Sr/(86)Sr) of teeth and whether these values are related to caries formation, age and sex. METHODS: A total of 160 permanent teeth were collected from 7- to 79-year-old people from the southern Shaanxi area of China, including 100 healthy teeth and 60 carious teeth (men and women each accounted for half of the samples). The concentration and isotope composition of Sr elements in the dental enamel of the teeth were measured using inductively coupled plasma mass spectrometry (ICP-MS) and thermal ionization mass spectrometry (TIMS). RESULTS: A significantly lower Sr concentration was found in the enamel of the carious teeth than in that of the healthy teeth for individuals of varying ages and sex. The Sr concentration in human carious teeth ranged between 79.70 µg/g and 85.80 µg/g; while the Sr concentration in healthy teeth ranged between 128 µg/g and 156.77 µg/g. Our results also demonstrated that the (87)Sr/(86)Sr ratio did not appear to be affected by the caries formation, age or sex. The (87)Sr/(86)Sr ratio in the enamel of the healthy and carious teeth of individuals of varying ages and genders ranged between 0.710935 and 0.711037, which falls into the range of (87)Sr/(86)Sr ratios found in the local, naturally occurring water, soils and rocks. CONCLUSIONS: Sr plays a significant role in dental health, and there is a negative correlation between Sr and the occurrence of dental caries. The (87)Sr/(86)Sr ratio of teeth reflects the (87)Sr/(86)Sr ratio of the associated environment, and there is no significant relationship with the frequency of dental caries, age or sex.


Assuntos
Cárie Dentária/metabolismo , Esmalte Dentário/química , Estrôncio/análise , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , China , Esmalte Dentário/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estrôncio/metabolismo , Dente/química , Dente/metabolismo , Adulto Jovem
12.
Sci Total Environ ; 870: 161896, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36709901

RESUMO

Silicate weathering is critical to sustain our habitable planet. Lithium (Li) isotopes enable us to investigate the nature of silicate weathering. A number of riverine Li isotope (δ7Lirw) investigations have been made from polar to equatorial terrains, but there remains no consensus about the controlling mechanisms of both weathering and δ7Lirw. Here we investigated δ7Lirw response to climate by collecting weekly river water samples in a small catchment (the Buha River within the Lake Qinghai basin) on the northeastern Tibetan Plateau, with stable tectonic, lithology, and topography. In the hydrology year of 2007 of the Buha River, we find that during the dry seasons, δ7Lirw ratios show temperature dependency typically, when the groundwater fed the river. During the monsoon seasons, δ7Lirw were obviously lower than the temperature dependency predicted values, when abundant rock dissolved and thereby fresh Li release into rivers. We propose that the hydrology and temperature dependency together play important roles in regulating δ7Lirw ratios in such an alpine small catchment. The mechanism is that long residence time facilitates the equilibrium chemical and Li isotopic fractionation during the dry seasons, so a temperature dependency of δ7Lirw is achieved. In contrast, rapid erosion and weathering contribution of fresh rock-like δ7Li to river water would significantly decrease δ7Lirw ratios during the monsoon seasons. This hypothesis can better interpret previously reported data of seasonal δ7Lirw variation, as a superposition between temperature dependency and hydrology regulation on silicates weathering in the small catchments besides tectonics.

13.
Sci Total Environ ; 901: 165842, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37516170

RESUMO

Over geological time scales, continental silicate weathering is considered as a critical carbon sink that regulates long-term climate feedback. By contrast, recent studies indicate that sulfide oxidation during weathering can be as a potential carbon source. However, whether chemical weathering in glacial conditions characterized by extreme erosion is a net carbon sink or source remains elusive. Here, we present the seasonal carbon cycle processes in a typical glacier catchment, via high-resolution (weekly) river water sampling during the whole 2017 in the Laohugou river, northeastern Tibetan Plateau. Our seasonal result shows that the release of CO2 by sulfide oxidation during the monsoon period can be much faster than CO2 consumption through weathering of silicate rocks, with maximum of ∼26 times. Extending to global glacial basins, we observed a consistent pattern that inorganic carbon releases in alpine glaciers are faster than atmospheric CO2 consumption. We propose that weathering in global glacial environment acts as a significant carbon source, and thus affects climate feedback.

14.
Environ Sci Pollut Res Int ; 30(35): 83834-83844, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349493

RESUMO

Sedimentary mercury (Hg) records from remote areas are significant for revealing historical variations of regional Hg and understanding the influence of regional and global Hg emissions. In this study, sediment cores were retrieved from two subalpine lakes in Shanxi Province in North China and employed to reconstruct atmospheric Hg variations over the last two centuries. The two records show similar anthropogenic Hg fluxes and evolution trends, corresponding with that they were affected mainly by regional atmospheric Hg deposition. Before ~1950, the records show negligible Hg pollution signals. Atmospheric Hg in the region had increased rapidly since the 1950s, lagged more than a half-century compared to the global Hg. This indicates that they were seldom affected by Hg emissions dominated by Europe and North America after the industrial revolution. The Hg increases since the 1950s in the two records corresponded well with rapid industrial developments in and around Shanxi Province after the founding of the China, implying the dominant contribution of domestic Hg emissions. By comparing other Hg records, we find that widespread increases in atmospheric Hg in China likely occurred post ~1950. This study rouses to re-examine historical variations in atmospheric Hg at various settings, which is significant to understanding global Hg cycling in the industrial era.


Assuntos
Mercúrio , Mercúrio/análise , Monitoramento Ambiental , Sedimentos Geológicos , Poluição Ambiental/análise , China
15.
Environ Pollut ; 310: 119831, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931386

RESUMO

Reconstructing the long-term Hg history in major emission countries is important for understanding the global Hg cycle and controlling Hg pollution. In this study, the atmospheric Hg history was reconstructed over the last three centuries based on three lacustrine sediment records from southeastern Inner Mongolia in North China, and its relationship with global and regional Hg emissions was revealed. These records show little Hg pollution in the 18th and 19th centuries. This implies a limited influence of Hg emitted from Europe and North America in this region, which is confirmed by their different Hg trends during the two World Wars and the post-1970s. Atmospheric Hg in the region had increased gradually since the 1900s, primarily contributed by emissions from the former Soviet Union in Lake Dalihu (DLH) and Lake Zhagesitai (ZGST) and from the Beijing-Tianjin-Hebei region in Lake Kulunnao (KLN). In the last century, two decreases in Hg fluxes occurred in the KLN core due to the economic recession in the 1960s-1970s and reduced energy consumption and industrial production in the 1990s. In the DLH and ZGST cores, only one decrease occurred, corresponded with the dissolution of the Soviet Union in the 1990s. Although atmospheric Hg emissions in China had stabilized or even decreased in the last decade, atmospheric Hg continued to increase, particularly in KLN, because of emissions from small cities in the region. This study can help understand Hg sources and control Hg pollution in North China and supplement the understanding of the global Hg cycling.


Assuntos
Mercúrio , Atmosfera , China , Monitoramento Ambiental , Poluição Ambiental , Sedimentos Geológicos , Lagos
16.
Nat Commun ; 13(1): 3359, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688840

RESUMO

Seawater lithium isotopes (δ7Li) record changes over Earth history, including a ∼9‰ increase during the Cenozoic interpreted as reflecting either a change in continental silicate weathering rate or weathering feedback strength, associated with tectonic uplift. However, mechanisms controlling the dissolved δ7Li remain debated. Here we report time-series δ7Li measurements from Tibetan and Pamir rivers, and combine them with published seasonal data, covering small (<102 km2) to large rivers (>106 km2). We find seasonal changes in δ7Li across all latitudes: dry seasons consistently have higher δ7Li than wet seasons, by -0.3‰ to 16.4‰ (mean 5.0 ± 2.5‰). A globally negative correlation between δ7Li and annual runoff reflects the hydrological intensity operating in catchments, regulating water residence time and δ7Li values. This hydrological control on δ7Li is consistent across climate events back to ~445 Ma. We propose that hydrological changes result in shifts in river δ7Li and urge reconsideration of its use to examine past weathering intensity and flux, opening a new window to reconstruct hydrological conditions.

17.
Rapid Commun Mass Spectrom ; 25(6): 743-9, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21337635

RESUMO

In order to better estimate the effectiveness of micro-sublimation technology on the elimination of organic matter interference during boron isotopic analysis, a series of improved experiments was carried out using simple apparatus. Recovery rates after micro-sublimation were measured for boric acid solutions with different B contents or different B/organic matter ratios. The improved micro-sublimation procedure combined with ion-exchange technology was then used to test natural samples (coral and foraminifera) for the separation of boron. Our results show that the time taken for 100% recovery of different amounts of B differed and that the proportions of B/organic matter within the natural organic matter have little effect on the relationship between the recovery rates of B and the micro-sublimation times. The experiments further confirm that the organic matter does indeed have an effect on boron isotope analyses by positive thermal ionization mass spectrometry and that the use of micro-sublimation can effectively remove interferences from the organic matter during boron isotopic analysis.

18.
Sci Total Environ ; 757: 143882, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33316508

RESUMO

As the largest river in Shanxi Province, the Fen River is the main water source for regional economic and ecological development. Water deficiency and industrialization have led to serious water pollution in the Fen River. The major and trace elements of seasonal river waters were measured to determine the spatiotemporal variations and assess the water quality as well as its controlling factors in the Fen River. Trace elements are divided into high abundance elements (B, Ba, Li, and Mn) and low abundance elements (As, Cu, Fe, Ni, Rb, Se, U, and V). The spatial variation of trace elements is obvious, with low values upstream, intermediate values downstream, and very high values midstream. The average values of the trace elements showed different seasonal variations, with high values of As, B, Ba, Mn, and Rb in the wet season, high Cu, V, and Li values in the dry season, and minor seasonal variations of Fe, Ni, Se, and U concentrations. Principal component analysis (PCA) and correlation analysis (CA) showed natural origins of Ba, Mn, Ni, and U, anthropogenic input of As, B, Cu, Li, Rb, Se, and V. According to the results of absolute principal component sore-multivariate linear regression (APCS-MLR), the major pollution sources in the Fen River basin were related to human activities. The land use type significantly influenced the concentrations of trace elements, with high values in the cropland and low values in the forest. The water quality index (WQI) values were higher in the midstream and wet season. In comparison with other rivers in the world, the pollution of the Fen River is at a moderate level. Health risk assessment showed that As, Ba, Mn, Ni, V, and Se were the potential pollutants damaging in the Fen River, especially for children. This study highlights the importance of seasonal sample analysis and can provide vital data for water quality conservation in the Fen River basin.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Criança , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Oligoelementos/análise , Poluentes Químicos da Água/análise , Qualidade da Água
19.
Environ Pollut ; 278: 116930, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744787

RESUMO

Groundwater is essential for regional ecological-economic system and is an important resource of drinking water, especially in the Chinese Loess Plateau (CLP), where is a typical water-limited ecosystem. Groundwater quality deterioration will affect water security and exacerbate the water shortages. Groundwater hydrochemistry, pollution source apportionment, quality and health risks were evaluated based on analysis of major ions and selected trace elements in seasonal samples of the Fen River Basin (FRB) in the eastern CLP. Groundwaters in the FRB were mainly HCO3--Ca2+-Na+ water type with low dissolved solutes in upstream samples, high values in midstream samples and medium values in downstream samples. Solutes in upstream samples were mainly derived from carbonate weathering, while those in midstream and downstream samples came from silicate weathering, evaporites dissolution and anthropogenic sources. Self-organizing map (SOM) showed the hydrochemistry remained unchanged from dry to wet season for most sampling points. The seasonal variations of Ag, Cd, Ni, Pb, and Tl were significant due to anthropogenic input. High NO3- in upstream and downstream samples resulted primarily from sewage discharge, and high SO42- in midstream and downstream samples was from gypsum- and coal-related industries. In addition, anthropogenic input related to coal industries significantly aggravates pollution of As, Ni, Ag, Fe, and Mn. Influenced by evaporites and anthropogenic input, midstream samples had high salinity, total hardness and water quality indices (WQIs) and were unsuitable for irrigation or drinking purposes. Seasonal variation of WQI in the FRB was unsignificant except Jiaokou River sub-basin, where groundwater quality was worse in the wet season than the dry season due to coal mining. Great attention should be paid to the high non-carcinogenic risks of exposure to F, V, Mn, and Cr via dermal absorption, particularly for children. Overall, groundwater quality in the FRB was best in upstream, medium in midstream and worst in midstream based on different index. Groundwater quality is deteriorated by anthropogenic input and the sewage discharge in the FRB should be strictly controlled. Our report provides a reference for groundwater pollution evaluation and source identification in similar areas.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , China , Ecossistema , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/análise , Qualidade da Água
20.
Nat Commun ; 12(1): 6935, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836960

RESUMO

Across the Miocene-Pliocene boundary (MPB; 5.3 million years ago, Ma), late Miocene cooling gave way to the early-to-middle Pliocene Warm Period. This transition, across which atmospheric CO2 concentrations increased to levels similar to present, holds potential for deciphering regional climate responses in Asia-currently home to more than half of the world's population- to global climate change. Here we find that CO2-induced MPB warming both increased summer monsoon moisture transport over East Asia, and enhanced aridification over large parts of Central Asia by increasing evaporation, based on integration of our ~1-2-thousand-year (kyr) resolution summer monsoon records from the Chinese Loess Plateau aeolian red clay with existing terrestrial records, land-sea correlations, and climate model simulations. Our results offer palaeoclimate-based support for 'wet-gets-wetter and dry-gets-drier' projections of future regional hydroclimate responses to sustained anthropogenic forcing. Moreover, our high-resolution monsoon records reveal a dynamic response to eccentricity modulation of solar insolation, with predominant 405-kyr and ~100-kyr periodicities between 8.1 and 3.4 Ma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA