Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Blood ; 127(7): 882-92, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26286850

RESUMO

Internal tandem duplication of the Fms-like tyrosine kinase-3 receptor (FLT3) internal tandem duplication (ITD) is found in 30% of acute myeloid leukemia (AML) and is associated with a poor outcome. In addition to tyrosine kinase inhibitors, therapeutic strategies that modulate the expression of FLT3-ITD are also promising. We show that AML samples bearing FLT3-ITD mutations are more sensitive to proteasome inhibitors than wild-type samples and this sensitivity is strongly correlated with a higher FLT3-ITD allelic burden. Using pharmacologic inhibitors of autophagy, specific downregulation of key autophagy proteins including Vps34, autophagy gene (Atg)5, Atg12, Atg13, biochemical, and microscopy studies, we demonstrated that proteasome inhibitors induced cytotoxic autophagy in AML cells. FLT3-ITD molecules were detectable within autophagosomes after bortezomib treatment indicating that autophagy induction was responsible for the early degradation of FLT3-ITD, which preceded the inhibition of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), PI3K/AKT, and STAT5 pathways, and subsequent activation of cell death. Moreover, proteasome inhibitors overcome resistance to quizartinib induced by mutations in the kinase domain of FLT3, suggesting that these compounds may prevent the emergence of mutant clones arising from tyrosine kinase inhibitor treatments. In xenograft mice models, bortezomib stimulated the conversion of LC3-I to LC3-II, indicating induction of autophagy in vivo, downregulated FLT3-ITD protein expression and improved overall survival. Therefore, selecting patients according to FLT3-ITD mutations could be a new way to detect a significant clinical activity of proteasome inhibitors in AML patients.


Assuntos
Autofagia/efeitos dos fármacos , Bortezomib/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética
2.
Nature ; 465(7299): 813-7, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20535211

RESUMO

Down's syndrome (DS) is a genetic disorder caused by full or partial trisomy of human chromosome 21 and presents with many clinical phenotypes including a reduced incidence of solid tumours. Recent work with the Ts65Dn model of DS, which has orthologues of about 50% of the genes on chromosome 21 (Hsa21), has indicated that three copies of the ETS2 (ref. 3) or DS candidate region 1 (DSCR1) genes (a previously known suppressor of angiogenesis) is sufficient to inhibit tumour growth. Here we use the Tc1 transchromosomic mouse model of DS to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses roughly 81% of Hsa21 genes but not the human DSCR1 region. We transplanted B16F0 and Lewis lung carcinoma tumour cells into Tc1 mice and showed that growth of these tumours was substantially reduced compared with wild-type littermate controls. Furthermore, tumour angiogenesis was significantly repressed in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis (JAM-B and PTTG1IP), that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis, explaining the reduced tumour growth in DS. Furthermore, we expect that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will permit the identification of other endothelium-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients.


Assuntos
Carcinoma Pulmonar de Lewis/irrigação sanguínea , Modelos Animais de Doenças , Síndrome de Down/genética , Dosagem de Genes/genética , Melanoma Experimental/irrigação sanguínea , Neovascularização Patológica/genética , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS1 , Animais , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cromossomos de Mamíferos/genética , Síndrome de Down/complicações , Síndrome de Down/fisiopatologia , Feminino , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Melanoma Experimental/complicações , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Transplante de Neoplasias , Neovascularização Patológica/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Fatores de Transcrição , Regulador Transcricional ERG , Trissomia/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Blood Cancer J ; 13(1): 106, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423955

RESUMO

The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinatory therapies to improve treatment efficacy. Here, we demonstrate that ruxolitinib induced autophagy in JAK2V617F cell lines and primary MPN patient cells through the activation of protein phosphatase 2A (PP2A). Inhibition of autophagy or PP2A activity along with ruxolitinib treatment reduced proliferation and increased the death of JAK2V617F cells. Accordingly, proliferation and clonogenic potential of JAK2V617F-driven primary MPN patient cells, but not of normal hematopoietic cells, were markedly impaired by ruxolitinib treatment with autophagy or PP2A inhibitor. Finally, preventing ruxolitinib-induced autophagy with a novel potent autophagy inhibitor Lys05 improved leukemia burden reduction and significantly prolonged the mice's overall survival compared with ruxolitinib alone. This study demonstrates that PP2A-dependent autophagy mediated by JAK2 activity inhibition contributes to resistance to ruxolitinib. Altogether, our data support that targeting autophagy or its identified regulator PP2A could enhance sensitivity to ruxolitinib of JAK2V617F MPN cells and improve MPN patient care.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Camundongos , Animais , Janus Quinase 2 , Proteína Fosfatase 2/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Autofagia , Mutação
4.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012202

RESUMO

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Ácidos Graxos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Estresse Oxidativo , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
5.
Int J Cancer ; 130(5): 1060-70, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21400516

RESUMO

c-Met [the hepatocyte growth factor (HGF) receptor] is a receptor tyrosine kinase playing a role in various biological events. Overexpression of the receptor has been observed in a number of cancers, correlating with increased metastatic tendency and poor prognosis. Additionally, activating mutations in c-Met kinase domain have been reported in a subset of familial cancers causing resistance to treatment. Receptor trafficking, relying on the integrity of the microtubule network, plays an important role in activation of downstream targets and initiation of signalling events. Aurintricarboxylic acid (ATA) is a triphenylmethane derivative that has been reported to inhibit microtubule motor proteins kinesins. Additional reported properties of this inhibitor include inhibition of protein tyrosine phosphatases, nucleases and members of the Jak family. Here we demonstrate that ATA prevents HGF-induced c-Met phosphorylation, internalisation, subsequent receptor trafficking and degradation. In addition, ATA prevented HGF-induced downstream signalling which also affected cellular function, as assayed by collective cell migration of A549 cells. Surprisingly, the inhibitory effect of ATA on HGF-induced phosphorylation and signalling in vivo was associated with an increase in basal c-Met kinase activity in vitro. It is concluded that the inhibitory effects of ATA on c-Met in vivo is an allosteric effect mediated through the kinase domain of the receptor. As the currently tested adenosine triphosphate competitive tyrosine kinase inhibitors (TKIs) may lead to tumor resistance (McDermott U, et al., Cancer Res 2010;70:1625-34), our findings suggest that novel anti-c-Met therapies could be developed in the future for cancer treatment.


Assuntos
Ácido Aurintricarboxílico/farmacologia , Cinesinas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Regulação Alostérica , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Células HeLa , Humanos , Neoplasias Pulmonares , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Cell Rep ; 36(7): 109528, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407408

RESUMO

Autophagy sustains cellular homeostasis and metabolism in numerous diseases. By regulating cancer metabolism, both tumor and microenvironmental autophagy promote tumor growth. However, autophagy can support cancer progression through other biological functions such as immune response regulation or cytokine/growth factor secretion. Moreover, autophagy is induced in numerous tumor types as a resistance mechanism following therapy, highlighting autophagy inhibition as a promising target for anti-cancer therapy. Thus, better understanding the mechanisms involved in tumor growth and resistance regulation through autophagy, which are not fully understood, will provide insights into patient treatment.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Homeostase , Humanos , Imunidade , Neoplasias/imunologia
7.
Biology (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207482

RESUMO

Autophagy, which literally means "eat yourself", is more than just a lysosomal degradation pathway. It is a well-known regulator of cellular metabolism and a mechanism implicated in tumor initiation/progression and therapeutic resistance in many cancers. However, whether autophagy acts as a tumor suppressor or promoter is still a matter of debate. In acute myeloid leukemia (AML), it is now proven that autophagy supports cell proliferation in vitro and leukemic progression in vivo. Mitophagy, the specific degradation of mitochondria through autophagy, was recently shown to be required for leukemic stem cell functions and survival, highlighting the prominent role of this selective autophagy in leukemia initiation and progression. Moreover, autophagy in AML sustains fatty acid oxidation through lipophagy to support mitochondrial oxidative phosphorylation (OxPHOS), a hallmark of chemotherapy-resistant cells. Nevertheless, in the context of therapy, in AML, as well as in other cancers, autophagy could be either cytoprotective or cytotoxic, depending on the drugs used. This review summarizes the recent findings that mechanistically show how autophagy favors leukemic transformation of normal hematopoietic stem cells, as well as AML progression and also recapitulates its ambivalent role in resistance to chemotherapies and targeted therapies.

8.
Redox Biol ; 40: 101866, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493902

RESUMO

Autophagy and apoptosis are powerful regulators of multiple facets of cellular metabolism and homeostasis. Here, we uncover that galanin, a pleiotropic peptide, regulates cardiac autophagy and deactivates apoptotic cell death through the Forkhead box protein O1 (FoxO1) pathway. In hypertrophied heart, galanin promotes autophagy and metabolic shift from fatty acid (FA) to glucose oxidation and preserves mitochondrial integrity. In cardiomyoblasts, galanin triggers autophagosome formation and alleviates hypertrophy, apoptotic cell death, and mitochondrial stress. Mechanistically, galanin dictates cell autophagic and anti-apoptotic phenotypes through FoxO1 pathway. Together, these findings uncover a previously unknown role for galanin in the regulation of cardiac autophagy and provide new insights into the molecular mechanisms supporting cell survival in the hypertrophic reprogramming of the heart.


Assuntos
Galanina , Transdução de Sinais , Apoptose , Autofagia , Cardiomegalia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos
9.
Nat Cancer ; 2(11): 1204-1223, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122057

RESUMO

Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a 'MitoScore' signature, which identifies high mitochondrial oxidative phosphorylation in vivo and in patients with AML. Primary AML cells with cytarabine (AraC) resistance and a high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) + AraC (but not to VEN + azacytidine). Single-cell transcriptomics of VEN + AraC-residual cell populations revealed adaptive resistance associated with changes in oxidative phosphorylation, electron transport chain complex and the TP53 pathway. Accordingly, treatment of VEN + AraC-resistant AML cells with electron transport chain complex inhibitors, pyruvate dehydrogenase inhibitors or mitochondrial ClpP protease agonists substantially delayed relapse following VEN + AraC. These findings highlight the central role of mitochondrial adaptation during AML therapy and provide a scientific rationale for alternating VEN + azacytidine with VEN + AraC in patients with a high MitoScore and to target mitochondrial metabolism to enhance the sensitivity of AML cells to currently approved therapies.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citarabina/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas
10.
Arterioscler Thromb Vasc Biol ; 29(7): 1093-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19423864

RESUMO

OBJECTIVE: Transplantation of adipose-derived stroma cells (ADSCs) stimulates neovascularization after experimental ischemic injury. ADSC proangiogenic potential is likely mediated by their ability to differentiate into endothelial cells and produce a wide array of angiogenic and antiapoptotic factors. Mitochondrial reactive oxygen species (ROS) have been shown to control ADSC differentiation. We therefore hypothesized that mitochondrial ROS production may change the ADSC proangiogenic properties. METHODS AND RESULTS: The use of pharmacological strategies (mitochondrial inhibitors, antimycin, and rotenone, with or without antioxidants) allowed us to specifically and precisely modulate mitochondrial ROS generation in ADSCs. We showed that transient stimulation of mitochondrial ROS generation in ADSCs before their injection in ischemic hindlimb strongly improved revascularization and the number of ADSC-derived CD31-positive cells in ischemic area. Mitochondrial ROS generation increased the secretion of the proangiogenic and antiapoptotic factors, VEGF and HGF, but did not affect ADSC ability to differentiate into endothelial cells, in vitro. Moreover, mitochondrial ROS-induced ADSC preconditioning greatly protect ADSCs against oxidative stress-induced cell death. CONCLUSIONS: Our study demonstrates that in vitro preconditioning by moderate mitochondrial ROS generation strongly increases in vivo ADSC proangiogenic properties and emphasizes the crucial role of mitochondrial ROS in ADSC fate.


Assuntos
Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Mitocôndrias/metabolismo , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Adipócitos , Animais , Células Cultivadas , Masculino , Camundongos , Traumatismo por Reperfusão/fisiopatologia , Células Estromais/citologia , Células Estromais/metabolismo
11.
Nat Cell Biol ; 22(9): 1076-1090, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807902

RESUMO

Autophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies reported that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy by an unknown mechanism. Here we find that p27 controls autophagy via an mTORC1-dependent mechanism in amino acid-deprived cells. During prolonged starvation, a fraction of p27 is recruited to lysosomes, where it interacts with LAMTOR1, a component of the Ragulator complex required for mTORC1 activation. Binding of p27 to LAMTOR1 prevents Ragulator assembly and mTORC1 activation, promoting autophagy. Conversely, p27-/- cells exhibit elevated mTORC1 signalling as well as impaired lysosomal activity and autophagy. This is associated with cytoplasmic sequestration of TFEB, preventing induction of the lysosomal genes required for lysosome function. LAMTOR1 silencing or mTOR inhibition restores autophagy and induces apoptosis in p27-/- cells. Together, these results reveal a direct coordinated regulation between the cell cycle and cell growth machineries.


Assuntos
Aminoácidos/metabolismo , Autofagia/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Lisossomos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Inanição/metabolismo
12.
Sci Signal ; 13(637)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576681

RESUMO

Receptor tyrosine kinases (RTKs) are often overexpressed or mutated in cancers and drive tumor growth and metastasis. In the current model of RTK signaling, including that of MET, downstream phosphatidylinositol 3-kinase (PI3K) mediates both cell proliferation and cell migration, whereas the small guanosine triphosphatase (GTPase) Rac1 mediates cell migration. However, in cultured NIH3T3 and glioblastoma cells, we found that class I PI3K mediated oncogenic MET-induced cell migration but not anchorage-independent growth. In contrast, Rac1 regulated both processes in distinct ways. Downstream of PI3K, Rac1 mediated cell migration through its GTPase activity, whereas independently of PI3K, Rac1 mediated anchorage-independent growth in a GTPase-independent manner through an adaptor function. Through its RKR motif, Rac1 formed a complex with the kinase mTOR to promote its translocation to the plasma membrane, where its activity promoted anchorage-independent growth of the cell cultures. Inhibiting mTOR with rapamycin suppressed the growth of subcutaneous MET-mutant cell grafts in mice, including that of MET inhibitor-resistant cells. These findings reveal a GTPase-independent role for Rac1 in mediating a PI3K-independent MET-to-mTOR pathway and suggest alternative or combined strategies that might overcome resistance to RTK inhibitors in patients with cancer.


Assuntos
Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Camundongos , Células NIH 3T3 , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-met/genética , Serina-Treonina Quinases TOR/genética , Proteínas rac1 de Ligação ao GTP/genética
13.
Nat Commun ; 11(1): 4056, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792483

RESUMO

Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Humanos , Leucemia/genética , Leucemia Mieloide Aguda/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Mitocôndrias/genética , Oxirredução , Fosforilação Oxidativa
14.
Cancer Discov ; 10(10): 1544-1565, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32641297

RESUMO

Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes cytarabine resistance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated adaptive mitochondrial stress response. Finally, genetic and pharmacologic inhibition of CD39 ecto-ATPase activity blocks the mitochondrial reprogramming triggered by cytarabine treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo. Together, these results reveal CD39 as a new residual disease marker and a promising therapeutic target to improve chemotherapy response in AML. SIGNIFICANCE: Extracellular ATP and CD39-P2RY13-cAMP-OxPHOS axis are key regulators of cytarabine resistance, offering a new promising therapeutic strategy in AML.This article is highlighted in the In This Issue feature, p. 1426.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Citarabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/metabolismo , Citarabina/farmacologia , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade
15.
Sci Rep ; 9(1): 11797, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395941

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Sci Rep ; 9(1): 8910, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222145

RESUMO

The monomeric GTPase RalB controls crucial physiological processes, including autophagy and invasion, but it still remains unclear how this multi-functionality is achieved. Previously, we reported that the RalGEF (Guanine nucleotide Exchange Factor) RGL2 binds and activates RalB to promote invasion. Here we show that RGL2, a major activator of RalB, is also required for autophagy. Using a novel automated image analysis method, Endomapper, we quantified the endogenous localization of the RGL2 activator and its substrate RalB at different endomembrane compartments, in an isogenic normal and Ras-transformed cell model. In both normal and Ras-transformed cells, we observed that RGL2 and RalB substantially localize at early and recycling endosomes, and to lesser extent at autophagosomes, but not at trans-Golgi. Interestingly the use of a FRET-based RalB biosensor indicated that RalB signaling is active at these endomembrane compartments at basal level in rich medium. Furthermore, induction of autophagy by nutrient starvation led to a considerable reduction of early and recycling endosomes, in contrast to the expected increase of autophagosomes, in both normal and Ras-transformed cells. However, autophagy mildly affected relative abundances of both RGL2 and RalB at early and recycling endosomes, and at autophagosomes. Interestingly, RalB activity increased at autophagosomes upon starvation in normal cells. These results suggest that the contribution of endosome membranes (carrying RGL2 and RalB molecules) increases total pool of RGL2-RalB at autophagosome forming compartments and might contribute to amplify RalB signaling to support autophagy.


Assuntos
Autofagia/fisiologia , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Compartimento Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Transporte Proteico , Proteínas ral de Ligação ao GTP/fisiologia
17.
Oncogenesis ; 8(8): 39, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311917

RESUMO

Autophagy is associated with both survival and cell death in myeloid malignancies. Therefore, deciphering its role in different genetically defined subtypes of acute myeloid leukemia (AML) is critical. Activating mutations of the KIT receptor tyrosine kinase are frequently detected in core-binding factor AML and are associated with a greater risk of relapse. Herein, we report that basal autophagy was significantly increased by the KITD816V mutation in AML cells and contributed to support their cell proliferation and survival. Invalidation of the key autophagy protein Atg12 strongly reduced tumor burden and improved survival of immunocompromised NSG mice engrafted with KITD816V TF-1 cells. Downstream of KITD816V, STAT3, but not AKT or ERK pathways, was identified as a major regulator of autophagy. Accordingly, STAT3 pharmacological inhibition or downregulation inhibited autophagy and reduced tumor growth both in vitro and in vivo. Taken together, our results support the notion that targeting autophagy or STAT3 opens up an exploratory pathway for finding new therapeutic opportunities for patients with CBF-AML or others malignancies with KITD816V mutations.

18.
Eur J Heart Fail ; 10(5): 454-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18436478

RESUMO

AIMS: To determine the effect of transplantation of undifferentiated and cardiac pre-differentiated adipose stem cells compared with bone marrow mononuclear cells (BM-MNC) in a chronic model of myocardial infarction. METHODS: Ninety-five Sprague-Dawley rats underwent left coronary artery ligation and after 1 month received by direct intramyocardial injection either adipose derived stem cells (ADSC), cardiomyogenic cells (AD-CMG) or BM-MNC from enhanced-Green Fluorescent Protein (eGFP) mice. The control group was treated with culture medium. Heart function was assessed by echocardiography and 18F-FDG microPET. Cell engraftment, differentiation, angiogenesis and fibrosis in the scar tissue were also evaluated by (immuno)histochemistry and immunofluorescence. RESULTS: One month after cell transplantation, ADSC induced a significant improvement in heart function (LVEF 46.3+/-9.6% versus 27.7+/-8% pre-transplant) and tissue viability (64.78+/-7.2% versus 55.89+/-6.3% pre-transplant). An increase in the degree of angiogenesis and a decrease in fibrosis were also detected. Although transplantation of AD-CMG or BM-MNC also had a positive, albeit smaller, effect on angiogenesis and fibrosis in the infarcted hearts, this benefit did not translate into a significant improvement in heart function or tissue viability. CONCLUSION: These results indicate that transplantation of adipose derived cells in chronic infarct provides a superior benefit to cardiac pre-differentiated ADSC and BM-MNC.


Assuntos
Infarto do Miocárdio/terapia , Células Estromais/transplante , Tecido Adiposo/citologia , Animais , Transplante de Medula Óssea , Doença Crônica , Feminino , Leucócitos Mononucleares/transplante , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Regeneração
20.
Med Sci (Paris) ; 33(3): 328-334, 2017 Mar.
Artigo em Francês | MEDLINE | ID: mdl-28367821

RESUMO

Autophagy is a self-cannibalism process essential for tissue homeostasis, which can be activated following different environmental stressful conditions. In normal cells, autophagy could act as a brake to prevent tumorigenesis, but cancer cells are able to hijack this process to their own benefit, to promote tumor growth and/or tumor resistance to anti-cancer therapies. Scientists and clinicians attempt to modulate this process to improve therapies, using autophagy inhibitors or activators, some of them being tested currently in clinical trials against several types of tumors. Thus, it appears that autophagy is at the center of a showdown between cancer cells and anti-cancer therapies. In this review, we focus on the mechanisms by which autophagy could be either the yin or the yang of cancers.


Assuntos
Autofagia/fisiologia , Transformação Celular Neoplásica , Neoplasias/patologia , Animais , Sobrevivência Celular , Transformação Celular Neoplásica/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA