Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 626(7999): 505-511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356069

RESUMO

Non-Abelian topological order is a coveted state of matter with remarkable properties, including quasiparticles that can remember the sequence in which they are exchanged1-4. These anyonic excitations are promising building blocks of fault-tolerant quantum computers5,6. However, despite extensive efforts, non-Abelian topological order and its excitations have remained elusive, unlike the simpler quasiparticles or defects in Abelian topological order. Here we present the realization of non-Abelian topological order in the wavefunction prepared in a quantum processor and demonstrate control of its anyons. Using an adaptive circuit on Quantinuum's H2 trapped-ion quantum processor, we create the ground-state wavefunction of D4 topological order on a kagome lattice of 27 qubits, with fidelity per site exceeding 98.4 per cent. By creating and moving anyons along Borromean rings in spacetime, anyon interferometry detects an intrinsically non-Abelian braiding process. Furthermore, tunnelling non-Abelions around a torus creates all 22 ground states, as well as an excited state with a single anyon-a peculiar feature of non-Abelian topological order. This work illustrates the counterintuitive nature of non-Abelions and enables their study in quantum devices.

2.
J Anat ; 243(4): 570-578, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37278337

RESUMO

The retrotransverse foramen (RTF) is a nonmetric variant of the atlas vertebra that can accommodate an anastomotic vertebral vein and occipital nerve. An understanding of this variation and its occurrence is crucial, as it could aid in explanation of the unidentified cause of the high prevalence of variability in this region. The aim of this meta-analysis was to obtain data on the prevalence of the RTF and its variations according to anatomy, sex, and ethnicity. A large-scale search was conducted through the major online databases to establish and determine the pool of studies reporting data relevant to the RTF. No date or language restrictions were applied. The data collection was categorized by prevalence, type (incomplete/complete), side, sex, ethnicity, laterality, and diameter. A total of 17 studies (n = 1979 subjects) were incorporated into our analysis. The overall pooled prevalence for a complete RTF was 11.4% and the overall pooled prevalence of an incomplete (partial) RTF was 9.6%. A complete RTF was most prevalent in Africa (Sub-Saharan population) (12.1%), followed by Europe (11.8%) and Asia (9.7%). As this variant occurs in a significant number of patients in all of the aforementioned populations, recognition, and awareness, especially with thorough investigation with computer tomography angiography (CTA) should be implemented, as it is the only possible way to visualize the possible contents of RTF.


Assuntos
Atlas Cervical , Humanos , Prevalência , Atlas Cervical/diagnóstico por imagem , Atlas Cervical/anatomia & histologia , Angiografia por Tomografia Computadorizada , África , Bases de Dados Factuais
3.
Glob Chang Biol ; 29(9): 2522-2535, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36843188

RESUMO

Climate change projections indicate more frequent and severe tropical marine heatwaves (MHWs) and accompanying hypoxia year-round. However, most studies have focused on peak summer conditions under the assumption that annual maximum temperatures will induce the greatest physiological consequences. This study challenges this idea by characterizing seasonal MHWs (i.e., mean, maximum, and cumulative intensities, durations, heating rates, and mean annual occurrence) and comparing metabolic traits (i.e., standard metabolic rate (SMR), Q10 of SMR, maximum metabolic rate (MMR), aerobic scope, and critical oxygen tension (Pcrit )) of winter- and summer-acclimatized convict tang (Acanthurus triostegus) to the combined effects of MHWs and hypoxia. Fish were exposed to one of six MHW treatments with seasonally varying maximum intensities (winter: 24.5, 26.5, 28.5°C; summer: 28.5, 30.5, 32.5°C), representing past and future MHWs under IPCC projections (i.e., +0, +2, +4°C). Surprisingly, MHW characteristics did not significantly differ between seasons, yet SMR was more sensitive to winter MHWs (mean Q10 = 2.92) than summer MHWs (mean Q10 = 1.81), despite higher absolute summer temperatures. Concurrently, MMR increased similarly among winter +2 and +4°C treatments (i.e., 26.5, 28.5°C) and all summer MHW treatments, suggesting a ceiling for maximal MMR increase. Aerobic scope did not significantly differ between seasons nor among MHW treatments. While mean Pcrit did not significantly vary between seasons, warming of +4°C during winter (i.e., 28.5°C) significantly increased Pcrit relative to the winter control group. Contrary to the idea of increased sensitivity to MHWs during the warmest time of year, our results reveal heightened sensitivity to the deleterious effects of winter MHWs, and that seasonal acclimatization to warmer summer conditions may bolster metabolic resilience to warming and hypoxia. Consequently, physiological sensitivity to MHWs and hypoxia may extend across larger parts of the year than previously expected, emphasizing the importance of evaluating climate change impacts during cooler seasons when essential fitness-related traits such as reproduction occur in many species.


Assuntos
Recifes de Corais , Peixes , Animais , Estações do Ano , Temperatura Alta , Temperatura , Aclimatação , Hipóxia
4.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403681

RESUMO

Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (stage 1) and a contralateral bend (stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment), 33 ms or 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur either side of a predicted 60 ms visual escape latency (i.e. during stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the stage 1 turning angle, compared with a single stimulation, whereas the 83 ms treatment had no effect on the escape trajectory. We conclude that Pacific staghorn sculpin can modulate their escape trajectory only between stimulation and the onset of the response, but the escape trajectory cannot be modulated after the body motion has started.


Assuntos
Perciformes , Animais , Reação de Fuga/fisiologia , Peixes , Perciformes/fisiologia , Comportamento Predatório
5.
J Exp Biol ; 224(Pt 3)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33431597

RESUMO

Fast escape responses to a predator threat are fundamental to the survival of mobile marine organisms. However, elasmobranchs are often underrepresented in such studies. Here, we measured the escape latency (time interval between the stimulus and first visible reaction) of mechanically induced escape responses in the Pacific spiny dogfish, Squalus suckleyi, and in two teleosts from the same region, the great sculpin, Myoxocephalus polyacanthocephalus, and the pile perch, Rhacochilus vacca We found that the dogfish had a longer minimum latency (66.7 ms) compared with that for the great sculpin (20.8 ms) and pile perch (16.7 ms). Furthermore, the dogfish had a longer latency than that of 48 different teleosts identified from 35 different studies. We suggest such long latencies in dogfish may be due to the absence of Mauthner cells, the giant neurons that control fast escape responses in fishes.


Assuntos
Squalus acanthias , Squalus , Animais , Cação (Peixe) , Peixes
6.
Environ Sci Technol ; 55(12): 8119-8127, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032421

RESUMO

Fishes exposed to crude oil have shown reduced sociability and poor habitat selection, which corresponded with increased predation risk. However, the contribution of oil-induced cardiorespiratory impairments to these findings is uncertain. This study explores the effect of oil exposure on predation risk in a model fish species, Sciaenops ocellatus, across a suite of physiological and behavioral end points to elucidate the mechanisms through which any observed effects are manifested. Using mesocosms to assess group predator avoidance, oil exposure to 36.3 µg l-1 ΣPAH reduced the time to 50% mortality from a mean time of 80.0 (74.1-86.0 95% confidence interval [CI]) min to 39.2 (35.6-42.8 95% CI) min. The influence of oil impaired cardiorespiratory and behavioral pathways on predation risk was assessed based on respiratory performance, swim performance, sociability, and routine activity. Swim trials demonstrated that cardiorespiratory and swim performance were unaffected by exposures to 26.6 or 100.8 µg l-1 ΣPAH. Interestingly, behavioral tests revealed that exposure to 26.6 µg l-1 ΣPAH increased distance moved, speed, acceleration, and burst activity. These data indicate that behavioral impairment is more sensitive than cardiorespiratory injury and may be a more important driver of downstream ecological risk following oil exposure in marine species.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Peixes , Poluição por Petróleo/efeitos adversos , Comportamento Predatório , Poluentes Químicos da Água/toxicidade
7.
Oecologia ; 196(2): 363-371, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036440

RESUMO

Increasing ocean temperatures and the resulting poleward range shifts of species has highlighted the importance of a species preferred temperature and thermal range in shaping ecological communities. Understanding the temperatures preferred and avoided by individual species, and how these are influenced by species interactions is critical in predicting the future trajectories of populations, assemblages, and ecosystems. Using an automated shuttlebox system, we established the preferred temperature and upper and lower threshold temperatures (i.e., avoided temperatures) of a common coral reef fish, the black-axil chromis, Chromis atripectoralis. We then investigated how the presence of conspecifics, heterospecifics (Neopomacentrus bankieri), or a predator (Cephalopholis spiloparaea) influenced the selection of these temperatures. Control C. atripectoralis preferred 27.5 ± 1.0 °C, with individuals avoiding temperatures below 23.5 ± 0.9 °C and above 29.7 ± 0.7 °C. When associating with either conspecifics or heterospecifics, C. atripectoralis selected significantly lower temperatures (conspecifics: preferred = 21.2 ± 1.4 °C, lower threshold = 18.1 ± 0.8 °C; heterospecifics: preferred = 21.1 ± 1.1 °C, lower threshold = 19.2 ± 0.9 °C), but not higher temperatures (conspecifics: preferred = 28.9 ± 1.2 °C, upper threshold = 30.8 ± 0.9 °C; heterospecifics: preferred = 29.7 ± 1.1 °C, upper threshold = 31.4 ± 0.8 °C). The presence of the predator, however, had a significant effect on both lower and upper thresholds. Individual C. atripectoralis exposed themselves to temperatures ~ 5.5 °C cooler or warmer (lower threshold: 18.6 ± 0.5 °C, upper threshold: 35.2 ± 0.5 °C) than control fish before moving into the chamber containing the predator. These findings demonstrate how behavioural responses due to species interactions influence the thermal ecology of a tropical reef fish; however, there appears to be limited scope for individuals to tolerate higher temperatures unless faced with the risk of predation.


Assuntos
Recifes de Corais , Ecossistema , Animais , Peixes , Comportamento Predatório , Temperatura
8.
J Fish Biol ; 98(3): 723-732, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33206373

RESUMO

Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15-34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.


Assuntos
Adaptação Fisiológica/fisiologia , Recifes de Corais , Oxigênio/metabolismo , Tubarões/fisiologia , Temperatura , Anaerobiose/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Estações do Ano , Termotolerância/fisiologia , Água/química
9.
J Exp Biol ; 223(Pt 12)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591340

RESUMO

To forage in fast, turbulent flow environments where prey is abundant, fishes must deal with the high associated costs of locomotion. Prevailing theory suggests that many species exploit hydrodynamic refuges to minimize the cost of locomotion while foraging. Here, we challenge this theory based on direct oxygen consumption measurements of drift-feeding trout (Oncorhynchus mykiss) foraging in the freestream and from behind a flow refuge at velocities up to 100 cm s-1 We demonstrate that refuging is not energetically beneficial when foraging in fast flows because of a high attack cost and low prey capture success associated with leaving a station-holding refuge to intercept prey. By integrating optimum foraging theory with empirical data from respirometry and video tracking, we developed a mathematical model to predict when drift-feeding fishes should exploit or avoid refuges based on prey density, size and flow velocity. Our optimum foraging and refuging model provides new mechanistic insights into locomotor costs, habitat use and prey choice of fish foraging in current-swept habitats.


Assuntos
Oncorhynchus mykiss , Animais , Hidrodinâmica , Locomoção , Consumo de Oxigênio , Comportamento Predatório , Natação
10.
Proc Biol Sci ; 286(1897): 20182934, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963832

RESUMO

A predator's ability to capture prey depends critically on how it coordinates its approach in response to a prey's motion. Flying insects, bats and raptors are capable of capturing prey with a strategy known as parallel navigation, which allows a predator to move directly towards the anticipated point of interception. It is unclear if predators using other modes of locomotion are employing this strategy when pursuing evasive prey. Using kinematic measurements and mathematical modelling, we tested whether bluefish ( Pomatomus saltatrix) pursue prey fish ( Fundulus heteroclitus) with parallel navigation. We found that the directional changes of bluefish were not consistent with this strategy, but rather were predicted by a strategy known as deviated pursuit. Although deviated pursuit requires few sensory cues and relatively modest motor coordination, a comparison of mathematical models suggested negligible differences in path length from parallel navigation, largely owing to the acceleration exhibited by bluefish near the end of a pursuit. Therefore, the strategy of bluefish is unlike flying predators, but offers comparable performance with potentially more robust control that may be well suited to the visual system and habitat of fishes. These findings offer a foundation for understanding the sensing and locomotor control of predatory fishes.


Assuntos
Perciformes/fisiologia , Comportamento Predatório/fisiologia , Navegação Espacial , Animais , Fenômenos Biomecânicos , Fundulidae , Modelos Biológicos
11.
J Fish Biol ; 94(1): 178-182, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421417

RESUMO

This study investigated the oxygen consumption of the putative oxygen conformer marbled swamp eel Synbranchus marmoratus during progressive hypoxia. Earlier studies have not reached an agreement on whether S. marmoratus is a conformer or a regulator. Our results support the view that S. marmoratus is an oxygen regulator, like most bony fishes.


Assuntos
Oxigênio/metabolismo , Smegmamorpha/fisiologia , Animais , Hipóxia , Smegmamorpha/sangue , Smegmamorpha/metabolismo
12.
J Exp Biol ; 221(Pt 11)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29615520

RESUMO

Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch, Cymatogaster aggregata (a labriform swimmer), were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with particle image velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rate of the swimming fish increased with swimming speed and pectoral fin beat frequency in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (versus low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high-turbulence compared with low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behaviour and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions.


Assuntos
Metabolismo Energético , Consumo de Oxigênio , Perciformes/fisiologia , Natação , Animais , Fenômenos Biomecânicos , Oxigênio/metabolismo , Reologia , Movimentos da Água
13.
J Therm Biol ; 78: 65-72, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509669

RESUMO

Temperature has a profound effect on all life and a particularly influential effect on ectotherms, such as fishes. Amphibious fishes have a variety of strategies, both physiological and/or behavioural, to cope with a broad range of thermal conditions. This study examined the relationship between prolonged (5 weeks) exposure to a range of temperatures (22, 25, 28, or 32 °C) on oxygen uptake rate and movement behaviours (i.e., thermoregulation and emergence) in a common amphibious fish, the barred mudskipper (Periophthalmus argentilneatuis). At the highest temperature examined (32 °C, approximately 5 °C above their summer average temperatures), barred mudskippers exhibited 33.7-97.7% greater oxygen uptake rates at rest (MO2Rest), emerged at a higher temperature (CTe; i.e., a modified critical thermal maxima (CTMax) methodology) of 41.3 ±â€¯0.3 °C relative to those maintained at 28, 25, or 22 °C. The 32 °C-maintained fish also ceased movement activity at the highest holding temperature suggesting that prolonged submergence at elevated temperatures is physiologically and energetically stressful to the individual. Using exhaustive exercise protocols with and without air exposure to simulate a predatory chase, the time to recovery was examined for all individuals. When submerged, mudskippers required 2.5x longer recovery time to return to resting oxygen uptake from exhaustive exercise than those fully emerged in air. Oxygen uptake data revealed that air exposure did not accrue oxygen debt, thereby allowing faster return to resting oxygen consumption rates. If the option to emerge was not available, mudskippers preferentially sought more benign water temperatures (26.7 ±â€¯2.1 °C), resembling those experienced by these fish during the Austral autumn, regardless of prolonged exposure higher or lower temperatures. These results add to our understanding of the strategies that amphibious fishes may use to mitigate extra costs associated with living in warm waters, and could be the key to understanding how such species will cope with increasing temperatures in the future.


Assuntos
Comportamento Animal , Peixes/fisiologia , Resposta ao Choque Térmico , Movimento , Aclimatação , Animais , Consumo de Oxigênio
14.
Glob Chang Biol ; 23(2): 566-577, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27593976

RESUMO

Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.


Assuntos
Aclimatação , Mudança Climática , Recifes de Corais , Peixes , Animais , Oceanos e Mares , Temperatura
15.
Phys Rev Lett ; 119(23): 233401, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286694

RESUMO

We report on the formation of a stable quantum degenerate mixture of fermionic ^{6}Li and bosonic ^{133}Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

16.
Biol Lett ; 13(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28701471

RESUMO

Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CTmax). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO2 (simulated ocean acidification) on the hypoxia sensitivity of CTmax We found that CTmax was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CTmax declined sharply with water oxygen tension (PwO2). Furthermore, the hypoxia sensitivity of CTmax was unaffected by elevated CO2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes.


Assuntos
Hipóxia , Animais , Recifes de Corais , Peixes , Oceanos e Mares , Temperatura
17.
Phys Rev Lett ; 113(24): 240402, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541753

RESUMO

In few-body physics, Efimov states are an infinite series of three-body bound states that obey universal discrete scaling symmetry when pairwise interactions are resonantly enhanced. Despite abundant reports of Efimov states in recent cold atom experiments, direct observation of the discrete scaling symmetry remains an elusive goal. Here we report the observation of three consecutive Efimov resonances in a heteronuclear Li-Cs mixture near a broad interspecies Feshbach resonance. The positions of the resonances closely follow a geometric series 1, λ, λ². The observed scaling constant λ(exp)=4.9(4) is in good agreement with the predicted value of 4.88.

18.
J Exp Biol ; 217(Pt 23): 4115-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25359933

RESUMO

In intertidal environments, the recurring hypoxic condition at low tide is one of the main factors affecting fish behaviour, causing broad effects on ecological interactions. We assessed the effects of hypoxia on lateralization (e.g. the tendency to turn left or right), a behaviour related to brain functional asymmetry, which is thought to play a key role in several life history aspects of fish. Using staghorn sculpin (Leptocottus armatus), a benthic fish that typically inhabits the intertidal zone, we found that hypoxia affects behavioural lateralization at the population level. On average, staghorn sculpins showed a distinct preference for right turns under normoxic conditions (>90% oxygen saturation), but an equal probability of turning right or left after exposure to hypoxia for 2 h (20% oxygen saturation). The specific turning preference observed in the staghorn sculpin control population is likely to have an adaptive value, for example in predator-prey interactions by enhancing attack success or survival from predatory attacks. Therefore the alteration of lateralization expressed by staghorn sculpins under hypoxic conditions may have far-reaching implications for species ecology and trophic interactions. Moreover, our work raises the need to study this effect in other species, in which a hypoxia-driven disruption of lateralization could affect a wider range of behaviours, such as social interactions and schooling.


Assuntos
Ecossistema , Eutrofização , Lateralidade Funcional/fisiologia , Locomoção/fisiologia , Oxigênio , Perciformes/fisiologia , Animais , Comportamento Animal , Água do Mar/química
19.
Med Phys ; 51(7): 5059-5069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38197459

RESUMO

BACKGROUND: Inorganic scintillation detectors (ISDs) are promising for in vivo dosimetry in brachytherapy (BT). ISDs have fast response, providing time resolved dose rate information, and high sensitivity, attributed to high atomic numbers. However, the conversion of the detector signal to absorbed dose-to-water is highly dependent on the energy spectrum of the incident radiation. This dependence is comprised of absorbed dose energy dependence, obtainable with Monte Carlo (MC) simulation, and the absorbed dose-to-signal conversion efficiency or intrinsic energy dependence requiring measurements. Studies have indicated negligible intrinsic energy dependence of ZnSe:O-based ISDs in Ir-192 BT. A full characterization has not been performed earlier. PURPOSE: This study characterizes the intrinsic energy dependence of ZnSe:O-based ISDs for kV X-ray radiation qualities, with energies relevant for BT. METHODS: Three point-like ISDs made from fiber-coupled cuboid ZnSe:O-based scintillators were calibrated at the Swedish National Metrology Laboratory for ionizing radiation. The calibration was done in terms of air kerma free-in-air, K air ${K}_{{\mathrm{air}}}$ , in 13 X-ray radiation qualities, Q $Q$ , from 25 to 300 kVp (CCRI 25-250 kV and ISO 4037 N-series), and in terms of absorbed dose to water, D w ${D}_{\mathrm{w}}$ , in a Co-60 beam, Q 0 ${Q}_0$ . The mean absorbed dose to the ISDs, relative to K air ${K}_{{\mathrm{air}}}$ and D w ${D}_{\mathrm{w}}$ , were obtained with the MC code TOPAS (Geant4) using X-ray spectra obtained with SpekPy software and laboratory filtration data and a generic Co-60 source. The intrinsic energy dependence was determined as a function of effective photon energy, E e f f ${E}_{eff}$ , (relative to Co-60). The angular dependence of the ISD signal was measured in a 25 kVp (0.20 mm Al HVL) and 135 kVp beam (0.48 mm Cu HVL), by rotating the ISDs 180° around the fiber's longitudinal axis (perpendicular to the beam). A full 360° was not performed due to setup limitations. The impact of detector design was quantified with MC simulation. RESULTS: Above 30 keV E e f f ${E}_{eff}$ the intrinsic energy dependence varied with less than 5 ± 4% from unity for all detectors (with the uncertainty expressed as the mean of all expanded measurement uncertainties for individual E e f f ${E}_{eff}$ above 30 keV, k = 2). Below 30 keV, it decreased with up to 17% and inter-detector variations of 13% were observed, likely due to differences in detector geometry not captured by the simulations using nominal geometry. In the 25 kVp radiation quality, the ISD signal varied with 24% over a ∼45° rotation. For 135 kVp, the corresponding variation was below 3%. Assuming a 0.05 mm thicker layer of reflective paint around the sensitive volume changed the absorbed dose with 6.3% at the lowest E e f f ${E}_{eff}$ , and with less than 2% at higher energies. CONCLUSION: The study suggests that the ISDs have an intrinsic energy dependence relative to Co-60 lower than 5 ± 4% in radiation qualities with E e f f ${E}_{eff}\ $ > 30 keV. Therefore, they could in principle be calibrated in a Co-60 beam quality and transferred to such radiation qualities with correction factors determined only by the absorbed dose energy dependence obtained from MC simulations. This encourages exploration of the ISDs' applications in intensity modulated BT with Yb-169 or other novel intermediate energy isotopes.


Assuntos
Braquiterapia , Método de Monte Carlo , Contagem de Cintilação , Braquiterapia/instrumentação , Braquiterapia/métodos , Contagem de Cintilação/instrumentação , Calibragem
20.
Brachytherapy ; 23(5): 514-522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38853063

RESUMO

BACKGROUND: In vivo dosimetry (IVD) is rarely performed in brachytherapy (BT), allowing potential dose misadministration to go unnoticed. This study presents a clinical routine-calibration method of detectors for IVD in high (HDR) and pulsed dose rate (PDR) Ir-192 BT. PURPOSE: To evaluate the dosimetric precision and feasibility of an in-clinic calibration routine of detectors for IVD in afterloading BT. METHODS: Calibrations were performed in a PMMA phantom with two needles inserted 20 mm apart. The source was loaded in one of the needles at 15 dwells for 10 s. The detector was placed in the other needle, and its signal was recorded. The mean signal at each dwell position was fitted to the expected dose rate with the calibration factor and the detector's longitudinal position being free parameters. The method was tested with an inorganic scintillation detector using one Ir-192 FlexiSource HDR and two Ir-192 GammaMedPlus PDR sources and followed by validation measurements in water. RESULTS: The standard measurement uncertainty (k = 1) of the calibration factor in absolute terms (Gy/s) was 3.2/3.4% for the HDR/PDR source. The uncertainty was dominated by source strength uncertainty, and the precision of the method was <1%. The mean ± 1SD of the difference in measured and expected dose rate during validation was 1.5 ± 4.7% (HDR) and 0.0 ± 4.1% (PDR) with a positional uncertainty in the setup of 0.33/0.23 mm (HDR/PDR) (k = 1). CONCLUSION: A precise and feasible in-clinic calibration method for IVD and source strength consistency tests in BT was presented.


Assuntos
Braquiterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Contagem de Cintilação , Braquiterapia/instrumentação , Braquiterapia/métodos , Braquiterapia/normas , Calibragem , Humanos , Contagem de Cintilação/instrumentação , Dosimetria in Vivo , Radioisótopos de Irídio/uso terapêutico , Desenho de Equipamento , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA