Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 150(24): 244301, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255082

RESUMO

Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2 µm wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500 eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide was extracted from the measurements and is found in good agreement with previous experiments, performed using conventional electron diffraction. By comparing our measurements to the results of calculations, based on the quantitative rescattering theory, the bond lengths and molecular geometry were extracted from the experimental differential cross sections to a precision better than ±5 pm and in agreement with the known values.

2.
Crit Care ; 15(3): R119, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21542927

RESUMO

INTRODUCTION: Not sedating critically ill patients reduces the time patients receive mechanical ventilation, decreases the time in the intensive care department and reduces the total hospital length of stay. We hypothesized that no sedation improves hemodynamic stability, decreases the need for vasoactive drugs, diminishes the need for extra fluids and lowers the risk of acute kidney injury. METHODS: We performed an evaluation on the database from our previous trial of 140 patients randomized to either no sedation vs. sedation with a daily interruption of sedatives. A total of 113 patients were included in the previous statistical analysis. Ten patients had pre-existing renal impairments and were excluded. Data were collected from observational cards and blood samples. RESULTS: A total of 103 patients were included in this retrospective review. We registered an increased urine output in the group receiving no sedation compared to the sedated control group (1.15 ml/kg/hour (0.59 to 1.53) vs. 0.88 ml/kg/hour (0.052 to 1.26), P = 0.03). In addition we saw a decrease in the number of patients with renal impairment according to the RIFLE classification (indicating Risk of renal dysfunction; Injury to the kidney; Failure of kidney function, Loss of kidney function and End-stage kidney disease) in the group receiving no sedation compared to the sedated control group (25 (51%) vs. 41 (76%), P = 0.012). The difference in the two groups with respect to mean arterial blood pressure, fluid balance and use of vasoactive drugs was not significant. CONCLUSIONS: A no sedation strategy to patients undergoing mechanical ventilation increases the urine output and decreases the number of patients with renal impairments.


Assuntos
Cuidados Críticos/métodos , Hipnóticos e Sedativos/efeitos adversos , Insuficiência Renal/induzido quimicamente , Respiração Artificial , Idoso , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal/fisiopatologia , Estudos Retrospectivos , Resultado do Tratamento , Urina
3.
Nat Commun ; 10(1): 3364, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358749

RESUMO

Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA