Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(34): 22607-22613, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603395

RESUMO

Bromide-based perovskites have large bandgaps, making them attractive for tandem solar cells developed to overcome the Shockley-Queisser limit. A perovskite solar cell architecture employs transporting layers to improve charge extraction and transport. Due to the wide variety of materials and preparation methods, it is critical to devise fast screening methods to rank transporting layers. Herein, we evaluate perovskite fluorescence quenching followed by time- and energy-resolved photoluminescence (TER-PL) and analyse the intensity dependence as a potential method to qualify charge-transporting layers rapidly. The capability of the technique was evaluated with TiO2/FAPbBr3 and SnO2/FAPbBr3, the most commonly used electron transporting layers, which were prepared using standard protocols to make best-performing devices. The results revealed that TiO2 is the most effective quencher due to the higher density of states in the conduction band, consistent with Marcus-Gerischer's theory. However, record-performance devices use SnO2 as the electron transport layer. This shows that the relationship between photoluminescence quenching and device performance is not bidirectional. Therefore, additional measurements like conductivity are also needed to provide reliable feedback for device performance.

2.
Phys Chem Chem Phys ; 24(3): 1675-1684, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982079

RESUMO

In this work, the photovoltaic performance and stability of perovskite solar cells (PSCs) based on a dopant-free hole transport layer (HTL) are efficiently improved by inserting a two-dimensional (2D) interfacial layer. The benzyl ammonium lead iodide (BA2PbI4) 2D perovskite is used as an interfacial layer between the 3D CH3NH3PbI3 perovskite and two moisture-resistant dopant-free HTLs including poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl] (TQ1) and poly(3-hexylthiophene) (P3HT). TQ1 with a facile synthesis procedure has a higher moisture resistivity compared to P3HT which can improve the stability of PSCs. The 2D BA2PbI4 perovskite with a less-volatile bulkier organic cation efficiently passivates the defects at the perovskite/HTL interface, leading to 11.95% and 15.04% efficiency for the modified TQ1 and P3HT based cells, respectively. For a better understanding, the structural, optical, and electrical properties of PSCs comprising P3HT and TQ1 HTLs with and without interface modification are studied. The interface modified PSCs show slower open-circuit voltage decay and longer carrier lifetimes compared to unmodified cells. In addition, impedance spectroscopy reveals lower charge transport resistance and higher recombination resistance for the modified devices, which could be associated with the modification of the interface between the 3D CH3NH3PbI3 perovskite and HTL caused by the 2D interfacial layer. Also after aging under ambient conditions for about 800 hours, the modified PCSs retain more than 80% of their initial PCEs. These results give us the hope of achieving simpler, cheaper, and more stable PSCs with dopant-free HTLs through 2D interfacial layers, which have great potential for commercialization.

3.
Small ; 16(24): e2001772, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419275

RESUMO

Inorganic CsPbI3 perovskite quantum dot (PQD) receives increasing attention for the application in the new generation solar cells, but the defects on the surface of PQDs significantly affect the photovoltaic performance and stability of solar cells. Herein, the amino acids are used as dual-passivation ligands to passivate the surface defects of CsPbI3 PQDs using a facile single-step ligand exchange strategy. The PQD surface properties are investigated in depth by combining experimental studies and theoretical calculation approaches. The PQD solid films with amino acids as dual-passivation ligands on the PQD surface are thoroughly characterized using extensive techniques, which reveal that the glycine ligand can significantly improve defect passivation of PQDs and therefore diminish charge carrier recombination in the PQD solid. The power conversion efficiency (PCE) of the glycine-based PQD solar cell (PQDSC) is improved by 16.9% compared with that of the traditional PQDSC fabricated with Pb(NO3 )2 treating the PQD surface, owning to improved charge carrier extraction. Theoretical calculations are carried out to comprehensively understand the thermodynamic feasibility and favorable charge density distribution on the PQD surface with a dual-passivation ligand.

4.
Inorg Chem ; 58(18): 12040-12052, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483638

RESUMO

Metal halide compounds with photovoltaic properties prepared from solution have received increased attention for utilization in solar cells. In this work, low-toxicity cesium bismuth iodides are synthesized from solution, and their photovoltaic and optical properties as well as electronic and crystal structures are investigated. The X-ray diffraction patterns reveal that a CsI/BiI3 precursor ratio of 1.5:1 can convert pure rhombohedral BiI3 to pure hexagonal Cs3Bi2I9, but any ratio intermediate of this stoichiometry and pure BiI3 yields a mixture containing the two crystalline phases Cs3Bi2I9 and BiI3, with their relative fraction depending on the CsI/BiI3 ratio. Solar cells from the series of compounds are characterized, showing the highest efficiency for the compounds with a mixture of the two structures. The energies of the valence band edge were estimated using hard and soft X-ray photoelectron spectroscopy for more bulk and surface electronic properties, respectively. On the basis of these measurements, together with UV-vis-near-IR spectrophotometry, measuring the band gap, and Kelvin probe measurements for estimating the work function, an approximate energy diagram has been compiled clarifying the relationship between the positions of the valence and conduction band edges and the Fermi level.

5.
Chemphyschem ; 17(10): 1441-5, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26919196

RESUMO

A high power conversion efficiency (PCE) of 5.5 % was achieved by efficiently incorporating a diketopyrrolopyrrole-based dye with a conducting polymer poly(3,4-ethylenediothiophene) (PEDOT) hole-transporting material (HTM) that was formed in situ, compared with a PCE of 2.9 % for small molecular spiro-OMeTAD-based solid-state dye solar cells (sDSCs). The high PCE for PEDOT-based sDSCs is mainly attributed to the significantly enhanced charge-collection efficiency, as a result of the three-order-of-magnitude higher hole conductivity (0.53 S cm(-1) ) compared with that of the widely used low molecular weight HTM spiro-OMeTAD (3.5×10(-4)  S cm(-1) ).

6.
Phys Chem Chem Phys ; 18(12): 8598-607, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26949128

RESUMO

Degradation of the materials in dye-sensitized solar cells at elevated temperatures is critical for use in real applications. Both during fabrication of the solar cell and under real working conditions the solar cells will be exposed to heat. In this work, mesoporous TiO2 electrodes sensitized with the dyes D35 and K77 were subject to heat-treatment and the effects of this were thereafter investigated by photoelectron spectroscopy. For D35 it was found that heat-treatment changes the binding configuration inducing an increased interaction between the sulfur of the linker unit and the TiO2 surface. The interaction resulting from the change in binding configuration also affects the position of the HOMO level, where a shift of +0.2 eV is observed when heated to 200 °C. For K77, parts of the thiocyanate units are detached and the nitrogen atom leaves the electrode whereas sulfur remains on the surface in various forms of sulfurous oxides. The total dye coverage of K77 gets reduced by heat-treatment. The HOMO level gets progressively less pronounced due to a loss of HOMO level electrons as a consequence of the lower dye coverage when heat-treated, which leads to a lower excitation rate and lower efficiency. The results are discussed in the context of performance for dye-sensitized solar cells.

7.
Phys Chem Chem Phys ; 18(31): 21921-9, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27440450

RESUMO

Means to measure the temporal evolution following a photo-excitation in conjugated polymers are a key for the understanding and optimization of their function in applications such as organic solar cells. In this paper we study the electronic structure dynamics by direct pump-probe measurements of the excited electrons in such materials. Specifically, we carried out a time-resolved photoelectron spectroscopy (TRPES) study of the polymer PCPDTBT by combining an extreme ultraviolet (XUV) high harmonic generation source with a time-of-flight spectrometer. After excitation to either the 1st excited state or to a higher excited state, we follow how the electronic structure develops and relaxes on the electron binding energy scale. Specifically, we follow a less than 50 fs relaxation of the higher exited state and a 10 times slower relaxation of the 1st excited state. We corroborate the results using DFT calculations. Our study demonstrates the power of TRPES for studying photo-excited electron energetics and dynamics of solar cell materials.

8.
Phys Chem Chem Phys ; 18(1): 252-60, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26608268

RESUMO

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

9.
Anal Chem ; 87(7): 3942-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751409

RESUMO

Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/análise , Corantes/química , Técnicas Eletroquímicas , Micelas , Polímeros/análise , Energia Solar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiofenos/química , Processos Fotoquímicos , Polimerização , Água/química
10.
Phys Chem Chem Phys ; 17(19): 12786-95, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25907247

RESUMO

A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.

11.
Chemphyschem ; 15(6): 1006-17, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24692317

RESUMO

Key processes in nanostructured dye-sensitized solar cells occur at material interfaces containing, for example, oxides, dye molecules, and hole conductors. A detailed understanding of interfacial properties is therefore important for new developments and device optimization. The implementation of X-ray-based spectroscopic methods for atomic-level understanding of such properties is reviewed. Specifically, the use of the chemical and element sensitivity of photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and resonant photoelectron spectroscopy for investigating interfacial molecular and electronic properties are described; examples include energy matching, binding configurations, and molecular orbital composition. Finally, results from the complete oxide/dye/hole-conductor systems are shown and demonstrate how the assembly itself can affect the molecular and electronic structure of the materials.

12.
Phys Chem Chem Phys ; 16(32): 17099-107, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25007378

RESUMO

Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO2/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb2S3 and Bi2S3 deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO2 and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results were used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb2S3 showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO2/Bi2S3 interface on the other hand showed no driving force for electron injection to TiO2, and the performance of the corresponding solar cell was very low.

13.
J Am Chem Soc ; 135(19): 7378-85, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23611020

RESUMO

Efficient solid state dye-sensitized solar cells (sDSCs) were obtained using a small hole transport material, MeO-TPD (N,N,N',N'-tetrakis(4-methoxyphenyl)benzidine), after an initial light soaking treatment. It was discovered that the light soaking treatment for the MeO-TPD based solar cells is essential in order to achieve the high efficiency (4.9%), which outperforms spiro-OMeTAD based sDSCs using the same dye and device preparation parameters. A mechanism based on Li(+) ion migration is suggested to explain the light soaking effect. It was observed that the electron lifetime for the MeO-TPD based sDSC strongly increases after the light soaking treatment, which explains the higher efficiency. After the initial light soaking treatment the device efficiency remains considerably stable with only 0.2% decrease after around 1 month (unsealed cells stored in dark).

14.
Nat Commun ; 14(1): 5486, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679329

RESUMO

Despite considerable research efforts on photoelectrochemical water splitting over the past decades, practical application faces challenges by the absence of efficient, stable, and scalable photoelectrodes. Herein, we report a metal-halide perovskite-based photoanode for photoelectrochemical water oxidation. With a planar structure using mesoporous carbon as a hole-conducting layer, the precious metal-free FAPbBr3 photovoltaic device achieves 9.2% solar-to-electrical power conversion efficiency and 1.4 V open-circuit voltage. The photovoltaic architecture successfully applies to build a monolithic photoanode with the FAPbBr3 absorber, carbon/graphite conductive protection layers, and NiFe catalyst layers for water oxidation. The photoanode delivers ultralow onset potential below 0 V versus the reversible hydrogen electrode and high applied bias photon-to-current efficiency of 8.5%. Stable operation exceeding 100 h under solar illumination by applying ultraviolet-filter protection. The photothermal investigation verifies the performance boost in perovskite photoanode by photothermal effect. This study is significant in guiding the development of photovoltaic material-based photoelectrodes for solar fuel applications.

15.
Phys Chem Chem Phys ; 14(2): 779-89, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22116450

RESUMO

Two hole conductor materials, spiro-OMeTAD and P3HT, were compared in solid-state dye-sensitized solar cells. Two organic dyes containing one anchor unit (D35) or two anchor units (M3) were used in the comparison. Absorbed photon to current conversion efficiency close to unity was obtained for the devices with spiro-OMeTAD. Energy conversion efficiencies of 4.7% and 4.9% were measured for the devices with spiro-OMeTAD and the dyes D35 and M3, respectively. For the devices using the P3HT hole conductor the results were rather different comparing the two dye molecules, with energy conversion efficiencies of 3.2% and 0.5% for D35 and M3, respectively. Photo-induced absorption measurements suggest that the regeneration of the dyes, and the polymer infiltration, is not complete using P3HT, while spiro-OMeTAD regenerates the dyes efficiently. However, the TiO(2)/D35/P3HT system shows rather high energy conversion efficiency and electrochemical oxidation of the dyes on TiO(2) indicates that D35 have a more efficient dye to dye hole conduction than M3, which thereby might explain the higher performance. The dye hole conduction may therefore be of significant importance for optimizing the energy conversion in such hybrid TiO(2)/dye/polymer systems.

16.
ACS Mater Au ; 2(3): 301-312, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35578703

RESUMO

Lead halide perovskite solar cells have reached power conversion efficiencies during the past few years that rival those of crystalline silicon solar cells, and there is a concentrated effort to commercialize them. The use of gold electrodes, the current standard, is prohibitively costly for commercial application. Copper is a promising low-cost electrode material that has shown good stability in perovskite solar cells with selective contacts. Furthermore, it has the potential to be self-passivating through the formation of CuI, a copper salt which is also used as a hole selective material. Based on these opportunities, we investigated the interface reactions between lead halide perovskites and copper in this work. Specifically, copper was deposited on the perovskite surface, and the reactions were followed in detail using synchrotron-based and in-house photoelectron spectroscopy. The results show a rich interfacial chemistry with reactions starting upon deposition and, with the exposure to oxygen and moisture, progress over many weeks, resulting in significant degradation of both the copper and the perovskite. The degradation results not only in the formation of CuI, as expected, but also in the formation of two previously unreported degradation products. The hope is that a deeper understanding of these processes will aid in the design of corrosion-resistant copper-based electrodes.

17.
Phys Chem Chem Phys ; 13(32): 14767-74, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21743919

RESUMO

The energy loss in dye-sensitized solar cells calculated from the energy difference between the lowest electronic transition of the dye and the obtained open-circuit voltage is often 1 eV or even more. To minimize this loss, it is important to accurately determine the energy alignment at the TiO(2)/dye/redox-mediator interface. In this study, we compared the results from electrochemistry and photoelectron spectroscopy for determining the energy alignment of three rylene dyes, two of which absorb relatively far in the red. The trends observed with the methods were different, as in the former, the energy alignment is measured relative to an external reference and includes contributions from solvent reorganization energies, while in the latter, it is measured relative to the energetics of the TiO(2) and is lacking such contributions. The influence of the dyes' dipole moments on the energetics of the TiO(2) was also measured and explained some of the differences in trends. Finally, we compared the injection efficiencies of the two red-absorbing dyes and found that the differences in injection efficiencies can be better explained using the energy alignment determined from photoelectron spectroscopy. This shows that the method for measuring the energetics of a DSC should be chosen according to what process one intends to study.


Assuntos
Algoritmos , Corantes Fluorescentes/química , Nanopartículas/química , Perileno/química , Teoria Quântica , Titânio/química , Adsorção , Fontes de Energia Elétrica , Eletroquímica , Estrutura Molecular , Espectroscopia Fotoeletrônica , Energia Solar , Propriedades de Superfície
18.
Phys Chem Chem Phys ; 13(8): 3534-46, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21173950

RESUMO

The frontier electronic structures of a series of organic dye molecules containing a triphenylamine moiety, a thiophene moiety and a cyanoacrylic acid moiety have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant photoelectron spectroscopy (RPES). The experimental results were compared to electronic structure calculations on the molecules, which are used to confirm and enrich the assignment of the spectra. The approach allows us to experimentally measure and interpret the basic valence energy level structure in the dye, including the highest occupied energy level and how it depends on the interaction between the different units. Based on N 1s X-ray absorption and emission spectra we also obtain insight into the structure of the excited states, the molecular orbital composition and dynamics. Together the results provide an experimentally determined energy level map useful in the design of these types of materials. Included are also results indicating femtosecond charge redistribution at the dye/TiO(2) interface.

19.
Nanoscale ; 13(12): 6234-6240, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33885609

RESUMO

In this work, four-terminal (4T) tandem solar cells were fabricated by using a methylammonium lead iodide (MAPbI3) perovskite solar cell (PSC) as the front-cell and a lead sulfide (PbS) colloidal quantum dot solar cell (CQDSC) as the back-cell. Different modifications of the tandem interlayer, at the interface between the sub-cells, were tested in order to improve the infrared transparency of the perovskite sub-cell and consequently increase the utilization of infrared (IR) light by the tandem system. This included the incorporation of a semi-transparent thin gold electrode (Au) on the MAPbI3 solar cell, followed by adding a molybdenum(vi) oxide (MoO3) layer or a surlyn layer. These interlayer modifications resulted in an increase of the IR transmittance to the back cell and improved the optical stability, compared to that in the reference devices. This investigation shows the importance of the interlayer, connecting the PSC with a strong absorption in the visible region and the CQDSC with a strong infrared absorption to obtain efficient next-generation tandem photovoltaics (PVs).

20.
ACS Appl Energy Mater ; 4(1): 510-522, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33615157

RESUMO

High-end organic-inorganic lead halide perovskite semitransparent p-i-n solar cells for tandem applications use a phenyl-C61-butyric acid methyl ester (PCBM)/atomic layer deposition (ALD)-SnO x electron transport layer stack. Omitting the PCBM would be preferred for manufacturing, but has in previous studies on (FA,MA)Pb(Br,I)3 and (Cs,FA)Pb(Br,I)3 and in this study on Cs0.05FA0.79MA0.16PbBr0.51I2.49 (perovskite) led to poor solar cell performance because of a bias-dependent light-generated current. A direct ALD-SnO x exposure was therefore suggested to form a nonideal perovskite/SnO x interface that acts as a transport barrier for the light-generated current. To further investigate the interface formation during the initial ALD SnO x growth on the perovskite, the mass dynamics of monitor crystals coated by partial p-i-n solar cell stacks were recorded in situ prior to and during the ALD using a quartz crystal microbalance. Two major finds were made. A mass loss was observed prior to ALD for growth temperatures above 60 °C, suggesting the decomposition of the perovskite. In addition, a mostly irreversible mass gain was observed during the first exposure to the Sn precursor tetrakis(dimethylamino)tin(IV) that is independent of growth temperature and that disrupts the mass gain of the following 20-50 ALD cycles. The chemical environments of the buried interface were analyzed by soft and hard X-ray photoelectron spectroscopy for a sample with 50 ALD cycles of SnO x on the perovskite. Although measurements on the perovskite bulk below and the SnO x film above did not show chemical changes, additional chemical states for Pb, Br, and N as well as a decrease in the amount of I were observed in the interfacial region. From the analysis, these states and not the heating of the perovskite were concluded to be the cause of the barrier. This strongly suggests that the detrimental effects can be avoided by controlling the interfacial design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA