Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(13): e2105420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119202

RESUMO

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers. The charred paper exhibits structural changes in the nano- and micro-range, with increased porosity and water sorption. In less charred areas, cellulose is affected by both chain cleavage and cross-linking. Based on these results and conclusions with regard to adhesion of auxiliaries, a stabilization method is developed, which coats the damaged paper with a thin layer of cellulose nanofibers. It enables the reliable preservation of the paper and-most importantly-retrieval of the contained historical information: the nanofibers form a flexible, transparent film on the surface and adhere strongly to the damaged matrix, greatly reducing its fragility, giving it stability, and enabling digitization and further handling.


Assuntos
Celulose , Nanofibras , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Porosidade , Água
2.
Biopolymers ; 112(8): e23434, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34000071

RESUMO

With the increasing need for bio-based materials developed by environmentally friendly procedures, this work shows a green method to develop shape-controlled structures from cellulose dissolving pulp coated by chitosan. This material was then tested to adsorb a common and widespread pollutant, 2,4-dichlorophenol under different pH conditions (5.5 and 9). Herein it was noticed that the adsorption only occurred in acidic pH (5.5) where electrostatic interaction drove the adsorption, demonstrating the potential to tune the response under desired conditions only. The adsorption was successful in the hydrogel structure with an adsorption capacity of 905 ± 71 mg/g from a solution with 16.6 ppm; furthermore, adsorption was also possible with dried hydrogel structures, presenting a maximum of adsorption of 646 ± 50 mg/g in a similar 16.6 ppm solution. Finally, adsorbent regeneration was successfully tested for both, dry (rewetted) and never-dried states, showing improved adsorption after regeneration in the case of the never dried hydrogel structures.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Celulose , Clorofenóis , Concentração de Íons de Hidrogênio , Cinética
3.
Langmuir ; 33(23): 5707-5712, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28520438

RESUMO

Basic adsorption of hydrophobic polymers from aprotic solvents was introduced as a platform technology to modify exclusively the surfaces of cellulose nanopapers. Dynamic vapor sorption demonstrated that the water vapor uptake ability of the nanopapers remained unperturbed, despite strong repellency to liquid water caused by the adsorbed hydrophobic polymer on the surface. This was enabled by the fact that the aprotic solvents used for adsorption did not swell the nanopaper unlike water that is generally applied as the adsorption medium in such systems. As case examples, the adsorptions of polystyrene (PS) and poly(trifluoroethylene) (PF3E) were followed by X-ray photoelectron spectroscopy and water contact angle measurements, backed up with morphological analysis by atomic force microscopy. The resulting nanopapers are useful in applications like moisture buffers where repellence to liquid water and ability for moisture sorption are desired qualities.

4.
Biomacromolecules ; 18(3): 898-905, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28199100

RESUMO

We present an efficient approach to develop cellulose nanocrystal (CNC) hybrids with magnetically responsive Fe3O4 nanoparticles that were synthesized using the (Fe3+/Fe2+) coprecipitation. After 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-catalyzed oxidation of CNC, carbodiimide (EDC/NHS) was used for coupling amine-containing iron oxide nanoparticles that were achieved by dopamine ligand exchange (NH2-Fe3O4 NPs). The as-prepared hybrids (Fe3O4@CNC) were further complexed with Cu(II) ions to produce specific protein binding sites. The performance of magnetically responsive Cu-Fe3O4@CNC hybrids was assessed by selectively separating lysozyme from aqueous media. The hybrid system displayed a remarkable binding capacity with lysozyme of 860.6 ± 14.6 mg/g while near full protein recovery (∼98%) was achieved by simple elution. Moreover, the regeneration of Fe3O4@CNC hybrids and efficient reutilization for protein separation was demonstrated. Finally, lysozyme separation from matrices containing egg white was achieved, thus revealing the specificity and potential of the presented method.


Assuntos
Celulose/química , Nanopartículas de Magnetita/química , Proteínas/química , Catálise , Óxidos N-Cíclicos/química , Muramidase/metabolismo , Oxirredução/efeitos dos fármacos
5.
Biomacromolecules ; 18(7): 2045-2055, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28530806

RESUMO

We present an approach to construct biocompatible and photoluminescent hybrid materials comprised of carbon quantum dots (CQDs) and TEMPO-oxidized cellulose nanocrystals (TO-CNCs). First, the amino-functionalized carbon quantum dots (NH2-CQDs) were synthesized using a simple microwave method, and the TO-CNCs were prepared by hydrochloric acid (HCl) hydrolysis followed by TEMPO-mediated oxidation. The conjugation of NH2-CQDs and TO-CNCs was conducted via carbodiimide-assisted coupling chemistry. The synthesized TO-CNC@CQD hybrid nanomaterials were characterized using X-ray photoelectron spectroscopy, cryo-transmittance electron microscopy, confocal microscopy, and fluorescence spectroscopy. Finally, the interactions of TO-CNC@CQD hybrids with HeLa and RAW 264.7 macrophage cells were investigated in vitro. Cell viability tests suggest the surface conjugation with NH2-CQDs not only improved the cytocompatibility of TO-CNCs, but also enhanced their cellular association and internalization on both HeLa and RAW 264.7 cells after 4 and 24 h incubation.


Assuntos
Celulose , Corantes Fluorescentes , Teste de Materiais , Nanopartículas/química , Pontos Quânticos/química , Animais , Celulose/química , Celulose/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Células RAW 264.7
6.
Small ; 12(14): 1847-53, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26880568

RESUMO

A maskless and programmable direct electron beam writing method is reported for making high-precision superhydrophilic-superhydrophobic wetting patterns with 152° contact angle contrast using an environmental scanning electron microscope (ESEM). The smallest linewidth achieved is below 1 µm. The reported effects of the electron beam induced local plasma may also influence a variety of microscopic wetting studies in ESEM.

7.
Biomacromolecules ; 17(9): 2891-900, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27477891

RESUMO

Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation. The only clinically approved antidote for heparin is protamine sulfate, which is, however, ineffective against low molecular weight heparin and can cause severe adverse reactions in patients. In this study, the facile synthesis of cationic-neutral diblock copolymers and their effective heparin binding is presented. Poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PDMAEMA) block copolymers were synthesized in two steps via atom-transfer radical polymerization (ATRP) using PEG as a macroinitiator. Solution state binding between heparin and a range of PEG-PDMAEMA block copolymers and one homopolymer was studied with dynamic light scattering and methylene blue displacement assay. Also in vitro binding in plasma was studied by utilizing a chromogenic heparin anti-Xa assay. Additionally, quartz crystal microbalance and multiparametric surface plasmon resonance were used to study the surface adsorption kinetics of the polymers on a heparin layer. It was shown that the block copolymers and heparin form electrostatically bound complexes with varying colloidal properties, where the block lengths play a key role in controlling the heparin binding affinity, polyelectrolyte complex size and surface charge. With the optimized polymers (PEG114PDMAEMA52 and PEG114PDMAEMA100), heparin could be neutralized in a dose-dependent manner, and bound efficiently into small neutral complexes, with a hydrodynamic radius less than 100 nm. These complexes had only a limited effect on cell viability. Based on these studies, our approach paves the way for the development of new polymeric heparin binding agents.


Assuntos
Heparina/metabolismo , Metacrilatos/química , Nylons/química , Polieletrólitos/metabolismo , Polietilenoglicóis/química , Polímeros/química , Heparina/química , Humanos , Cinética , Polieletrólitos/química , Polimerização
8.
Chemistry ; 21(8): 3183-6, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25580698

RESUMO

Thiol-ene click reaction was successfully employed for chemical modification of graphene oxide (GO) by one-step synthesis. Herein, 2,2-azobis(2-methylpropionitrile) (AIBN) was used as thermal catalyst and cysteamine hydrochloride (HS-(CH2 )2 -NH2 HCl) was used as thiol-containing compound, which is incorporated to GO surface upon reaction with the C=C bonds. The hydrochloride acts as protecting group for the amine, which is finally eliminated by adding sodium hydroxide. The modified GO contains both S- and N-containing groups (NS-GO). We found that NS-GO sheets form good dispersion in water, ethanol, and ethylene glycol. These graphene dispersions can be processed into functionalized graphene film. Besides, it was demonstrated that NS-GO was proved to be an excellent host matrix for platinum nanoparticles. The developed method paves a new way for graphene modification and its functional nanocomposites.

9.
Biomacromolecules ; 15(4): 1534-42, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628489

RESUMO

We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Antivirais/química , Antivirais/farmacologia , Celulose/síntese química , Nanopartículas/química , Nanotecnologia/métodos , Vírus da Floresta de Semliki/efeitos dos fármacos , Tirosina/análogos & derivados , Animais , Biomimética , Celulose/química , Chlorocebus aethiops , Epitélio Corneano/citologia , Epitélio Corneano/efeitos dos fármacos , Genes erbB-1 , Ligantes , Nanopartículas/toxicidade , Vírus da Floresta de Semliki/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Tirosina/química , Células Vero/efeitos dos fármacos , Células Vero/virologia
10.
Biomacromolecules ; 14(8): 2807-13, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23799635

RESUMO

We show a simple method toward nanoscale cilia-like structures, i.e., functional hairy surfaces, upon topochemically functionalizing nanorods of cellulose nanocrystals (CNCs) with thiol end groups (CNC-SHs), which leads to their immobilization onto a gold surface from one end, still allowing their orientational mobility. CNCs having a lateral dimension of 3-5 nm and length of 50-500 nm incorporate the native crystalline structure with hydrogen-bonded cellulose chains in the parallel configuration. This facilitates asymmetric, selective chemical modification of the reducing ends through reductive amination. Successful thiol functionalization is demonstrated using cryo transmission electron microscopy based on selective attachment of silver nanoparticles to the CNC-SH ends to form Janus-like colloidal rod-sphere adducts. The extent of thiol modification of CNC-SHs is quantified using X-ray photoelectron spectroscopy. The promoted binding of CNC-SHs on gold surfaces is shown by atomic force microscopy and quartz crystal microbalance, where the high dissipation suggests pronounced orientational mobility due to flexible joints at one rod end onto the surfaces. That the joints are flexible is also shown by the bending and realignment of the CNC-SH rods using a receding triple-phase evaporation front of a drying drop of water. The ability of the hairy surface to size-selectively resist particle binding was also investigated. As the CNCs are piezoelectric and allow magnetic functionalization by nanoparticles, we foresee a general platform for nanosized artificial cilia for fluid manipulation and controlled adsorption/desorption.


Assuntos
Materiais Biomiméticos/química , Celulose/química , Nanopartículas/química , Adsorção , Cílios , Coloides , Ouro/química , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
11.
Biomacromolecules ; 14(4): 1231-9, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23484974

RESUMO

Understanding the enzymatic hydrolysis of cellulose and the influence of lignin in the process are critical for viable production of fuels and chemicals from lignocellulosic biomass. The interactions of monocomponent cellulases with cellulose and lignin substrates were investigated by using thin films supported on quartz crystal microgravimetry (QCM) resonators. Trichoderma reesei exoglucanase (CBH-I) and endoglucanase (EG-I) bound strongly to both cellulose and lignin but EG-I exhibited a distinctive higher affinity with lignin, causing a more extensive inhibition of the cellulolytic reactions. CBH-I was found to penetrate into the bulk of the cellulose substrate increasing the extent of hydrolysis and film deconstruction. In the absence of a cellulose binding domain (CBD) and a linker, the CBH-I core adsorbed slowly and was not able to penetrate into the film. Conversely to CBH-I, EG-I exhibited activity only on the surface of the lignocellulose substrate even when containing a CBD and a linker. Interestingly, EG-I displayed a clearly different interaction profile as a function of contact time registered by QCM.


Assuntos
Celulases/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Lignina/química , Adsorção , Celulases/química , Hidrólise , Lignina/análise , Trichoderma/enzimologia , Trichoderma/metabolismo
12.
Biomacromolecules ; 13(4): 1051-8, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22360491

RESUMO

In this Article, we present a new strategy for preparing an antihemoglobin biointerface on cellulose. The preparation method is based on functionalization of the cellulose surface by the irreversible adsorption of CMC, followed by covalent linking of antibodies to CMC. This would provide the means for affordable and stable cellulose-based biointerfaces for immunoassays. The preparation and characterization of the biointerface were studied on Langmuir-Schaefer cellulose model surfaces in real time using the quartz crystal microbalance with dissipation and surface plasmon resonance techniques. The stable attachment of antihemoglobin to adsorbed CMC was achieved, and a linear calibration of hemoglobin was obtained. CMC modification was also observed to prevent nonspecific protein adsorption. The antihemoglobin-CMC surface regenerated well, enabling repeated immunodetection cycles of hemoglobin on the same surface.


Assuntos
Anticorpos/química , Celulose/química , Imunoconjugados/química , Adsorção , Anticorpos/imunologia , Reações Antígeno-Anticorpo , Celulose/análogos & derivados , Celulose/imunologia , Hemoglobinas/química , Hemoglobinas/imunologia , Imunoensaio , Imunoconjugados/imunologia , Propriedades de Superfície
13.
Biomacromolecules ; 13(9): 2802-10, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22831169

RESUMO

We investigated the adsorption and chemical conjugation of avidin and its deglycosylated form, neutravidin, on films of regenerated and nanofibrillar cellulose. The dynamics and extent of biomolecular attachment were monitored in situ by quartz crystal microbalance microgravimetry and ex situ via surface analyses with atomic force microscopy and X-ray photoelectron spectroscopy. The installation of carboxyl groups on cellulose after modification with carboxymethylated cellulose (CMC) or TEMPO-oxidation significantly increases physisorption of avidins, which can be then covalently conjugated by using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride/N-hydroxysuccinimide (EDS/NHS) coupling chemistries. The developed cellulose-avidin biointerfaces are able to scavenge biotinylated molecules from solution as demonstrated by successful surface complexation of biotinylated bovine serum albumin (Biotin-BSA) and antihuman immunoglobulin G (Biotin-anti-hIgG). Finally, we show that cellulose substrates carrying immobilized anti-hIgG are effective in detecting human immunoglobulin G (hIgG) from fluid matrices.


Assuntos
Avidina/química , Biotina/química , Carboximetilcelulose Sódica/química , Imunoglobulina G/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Celulose/química , Reagentes de Ligações Cruzadas/química , Óxidos N-Cíclicos/química , Humanos , Imunoglobulina G/análise , Microscopia de Força Atômica , Oxirredução , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/análise , Soluções , Propriedades de Superfície
14.
Biomacromolecules ; 13(10): 3228-40, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22954385

RESUMO

Ultrathin bicomponent films of cellulose and lignin derivatives were deposited on silica supports by spin coating, and after conversion into the respective polymer precursor, they were used as a model system to investigate interfacial phenomena relevant to lignocellulose biocatalysis. Film morphology, surface chemical composition, and wettability were determined by atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle, respectively. Phase separation of cellulose and lignin produced structures that resembled the cell wall of fibers and were used to monitor enzyme binding and cellulolytic reactions via quartz crystal microgravimetry. The rate and extent of hydrolysis was quantified by using kinetic models that indicated the role of the surface lignin domains in enzyme inhibition. Hydrophobic interactions between cellulases and the substrates and their critical role on irreversible adsorption were elucidated by using acetylated lignin films with different degrees of substitution. Overall, it is concluded that sensors based on the proposed ultrathin films of lignocellulose can facilitate a better understanding of the complex events that occur during bioconversion of cellulosic biomass.


Assuntos
Celulase/antagonistas & inibidores , Materiais Revestidos Biocompatíveis/farmacologia , Inibidores Enzimáticos/farmacologia , Lignina/farmacologia , Adsorção , Biocatálise , Parede Celular/química , Parede Celular/metabolismo , Celulase/química , Celulase/metabolismo , Materiais Revestidos Biocompatíveis/química , Inibidores Enzimáticos/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lignina/química , Quartzo/química , Dióxido de Silício/química , Relação Estrutura-Atividade , Propriedades de Superfície
15.
Biomacromolecules ; 12(12): 4311-8, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22035370

RESUMO

The adsorption of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) on cellulose supports were investigated. The dynamics and extent of related adsorption processes were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Amine groups were installed on the cellulose substrate by adsorption of chitosan from aqueous solution, which allowed for hIgG to physisorb from acid media and produced a functionalized substrate with high surface density (10 mg/m(2)). hIgG adsorption from neutral and alkaline conditions was found to yield lower adsorbed amounts. The installation of the carboxyl groups on cellulose substrate via carboxymethylated cellulose (CMC) adsorption from aqueous solution enhanced the physisorption of hIgG at acidic (adsorbed amount of 5.6 mg/m(2)) and neutral conditions. hIgG adsorption from alkaline conditions reduced the surface density. BSA was used to examine protein attachment on cellulose after modification with chitosan or carboxymethyl cellulose. At the isoelectric point of BSA (pI 5), both of the surface modifications enhanced the adsorption of this protein when compared to that on unmodified cellulose (a 2-fold increase from 1.7 to 3.5 mg/m(2)). At pH 4, the electrostatic interactions favored the adsorption of BSA on the CMC-modified cellulose, revealing the affinity of the system and the possibility of tailoring biomolecule binding by choice of the surface modifier and pH of the medium.


Assuntos
Celulase/metabolismo , Quitosana/metabolismo , Imunoglobulina G/metabolismo , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacocinética , Adsorção , Aminas/química , Aminas/metabolismo , Celulose/química , Celulose/metabolismo , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
16.
ACS Nano ; 15(4): 6774-6786, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33779142

RESUMO

Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm-3) and surface area (1152 m2·g-1). Given their features, the carbon SPs offer hierarchical access to adsorption sites that are well suited for CO2 capture (77 mg CO2·g-1), while presenting a relatively low pressure drop (∼33 kPa·m-1 calculated for a packed fixed-bed column). The introduced lignin-derived SPs address the limitations associated with mass transport (diffusion of adsorbates within channels) and kinetics of systems that are otherwise based on nanoparticles. Moreover, the carbon SPs do not require doping with heteroatoms (as tested for N) for effective CO2 uptake (at 1 bar CO2 and 40 °C) and are suitable for regeneration, following multiple adsorption/desorption cycles. Overall, we demonstrate porous SP carbon systems of low cost (precursor, fabrication, and processing) and superior activity (gas sorption and capture).

17.
Biomacromolecules ; 11(10): 2683-91, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20843063

RESUMO

Cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with thermoresponsive macromolecules. The CNCs were grafted with poly(N-isopropylacrylamide) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) under various conditions at room temperature. The grafting process was confirmed via Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy and the different molecular masses of the grafts were quantified and found to depend on the initiator and monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. It is expected that suspension stability, interfacial interactions, friction, and other properties of grafted CNCs can be controlled by changes in temperature and provide a unique platform for further development of stimuli-responsive nanomaterials.


Assuntos
Acrilamidas/química , Acrilamidas/síntese química , Celulose/química , Nanopartículas/química , Polimerização , Polímeros/química , Polímeros/síntese química , Resinas Acrílicas , Boehmeria/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Transporte de Elétrons , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
ACS Appl Bio Mater ; 3(11): 7428-7438, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33225237

RESUMO

This paper demonstrates a high-throughput approach to fabricate nanocellulose films with multifunctional performance using conventionally existing unit operations. The approach comprises cast-coating and direct interfacial atmospheric plasma-assisted gas-phase modification along with the microscale patterning technique (nanoimprint lithography, NIL), all applied in roll-to-roll mode, to introduce organic functionalities in conjunction with structural manipulation. Our strategy results in multifunctional cellulose nanofibrils (CNF) films in which the high optical transmittance (∼90%) is retained while the haze can be adjusted (2-35%). Concomitantly, the hydrophobic/hydrophilic balance can be tuned (50-21 mJ/m2 with the water contact angle ranging from ∼20 up to ∼120°), while intrinsic hygroscopicity of CNF films is not significantly compromised. Therefore, a challenge to produce multifunctional bio-based materials with properties defined by various high-performance applications conjoined to the lack of efficient processing strategies is elucidated. Overall, economically and ecologically viable strategy, which was realized by facile and upscalable unit operations using the R2R technology, is introduced to expand the properties' spaces and thus offer a vast variety of interesting applications for CNF films.

19.
Carbohydr Polym ; 227: 115363, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590853

RESUMO

Environmental benign cellulosic textiles are hampered by their tendency to absorb water, which restricts their use in functional clothing. Herein we describe a method to functionalize textile surfaces using thin, open coatings based on natural wax particles and natural polymers rendering cellulosic fabrics water-repellent while retaining their feel and breathability. The impact of curing temperature, cationic polymer and fabric properties on wetting and long-term water-repellency were studied using contact angle measurements and scanning electron microscopy. The wetting properties were correlated to roughness of the textiles using white light interferometer. X-ray photoelectron spectroscopy revealed the surface chemical composition, leading to fundamental understanding of the effect of annealing on the wax layer. Breathability was evaluated by water vapor permeability. The optimal curing temperature was 70 °C. The developed coating performed well on different natural textiles, and better than commercial alternatives. A set of garment prototypes were produced using the coating.


Assuntos
Celulose/química , Têxteis , Ceras/química , Vestuário , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
20.
ACS Appl Mater Interfaces ; 12(32): 36437-36448, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672936

RESUMO

TEMPO-oxidized cellulose nanofibrils (TOCNF) and oxidized carbon nanotubes (CNT) were used as humidity-responsive films and evaluated using electroacoustic admittance (quartz crystal microbalance with impedance monitoring, QCM-I) and electrical resistivity. Water uptake and swelling phenomena were investigated in a range of relative humidity (% RH) between 30 and 60% and temperatures between 25 and 50 °C. The presence of CNT endowed fibril networks with high water accessibility, enabling fast and sensitive response to changes in humidity, with mass gains of up to 20%. The TOCNF-based sensors became viscoelastic upon water uptake, as quantified by the Martin-Granstaff model. Sensing elements were supported on glass and paper substrates and confirmed a wide window of operation in terms of cyclic % RH, bending, adhesion, and durability. The electrical resistance of the supported films increased by ∼15% with changes in % RH from 20 to 60%. The proposed system offers a great potential to monitor changes in smart packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA