Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 18(8): 3125-3131, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34296616

RESUMO

Halogenation can be utilized for the purposes of labeling and molecular imaging, providing a means to, e.g., follow drug distribution in an organism through positron emission tomography (PET) or study the molecular recognition events unfolding by nuclear magnetic resonance (NMR) spectroscopy. For cancer therapeutics, where often highly toxic substances are employed, it is of importance to be able to track the distribution of the drugs and their metabolites in order to ensure minimal side effects. Labeling should ideally have a negligible disruptive effect on the efficacy of a given drug. Using a combination of NMR spectroscopy and cytotoxicity assays, we identify a site susceptible to halogenation in monomethyl auristatin F (MMAF), a widely used cytotoxic agent in the antibody-drug conjugate (ADC) family of cancer drugs, and study the effects of fluorination and chlorination on the physiological solution structure of the auristatins and their cytotoxicity. We find that the cytotoxicity of the parent drug is retained, while the conformational equilibrium is shifted significantly toward the biologically active trans isomer, simultaneously decreasing the concentration of the inactive and potentially disruptive cis isomer by up to 50%. Our results may serve as a base for the future assembly of a multifunctional toolkit for the assessment of linker technologies and exploring bystander effects from the warhead perspective in auristatin-derived ADCs.


Assuntos
Antineoplásicos/química , Citotoxinas/química , Halogenação , Imunoconjugados/química , Neoplasias/metabolismo , Oligopeptídeos/química , Fenilalanina/química , Aminobenzoatos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Conformação Molecular , Neoplasias/patologia
2.
Mol Pharm ; 18(1): 285-304, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33390018

RESUMO

Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.


Assuntos
Boro/administração & dosagem , Boro/química , Neoplasias Encefálicas/radioterapia , Transportador de Glucose Tipo 1/metabolismo , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro/métodos , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos
3.
Phys Chem Chem Phys ; 23(31): 16629-16634, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338707

RESUMO

The magnetically induced current density of an intriguing naphthalene-fused heteroporphyrin has been studied, using the quantum-chemical, gauge-including magnetically induced currents (GIMIC) method. The ring-current strengths and current-density pathways for the heteroporphyrin, its Pd complex, and the analogous quinoline-fused heteroporphyrin provide detailed information about their aromatic properties. The three porphyrinoids have similar current-density pathways and are almost as aromatic as free-base porphyrin. Notably, we show that the global ring current makes a branch at three specific points. Thus, the global current is composed of a total of eight pathways that include 22 π-electrons, with no contributions from 18-electron pathways.

4.
Mol Pharm ; 17(10): 3885-3899, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32787269

RESUMO

Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro/administração & dosagem , Portadores de Fármacos/efeitos da radiação , Glucose/efeitos da radiação , Isótopos/administração & dosagem , Neoplasias/radioterapia , Boro/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos/efeitos da radiação , Glucose/análogos & derivados , Glucose/síntese química , Glucose/farmacocinética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Isótopos/farmacocinética , Simulação de Acoplamento Molecular
5.
J Am Chem Soc ; 141(4): 1646-1654, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30586298

RESUMO

Acetylated oligosaccharides are common in nature. While they are involved in several biochemical and biological processes, the role of the acetyl groups and the complexity of their migration has largely gone unnoticed. In this work, by combination of organic synthesis, NMR spectroscopy and quantum chemical modeling, we show that acetyl group migration is a much more complex phenomenon than previously known. By use of synthetic oligomannoside model compounds, we demonstrate, for the first time, that the migration of acetyl groups in oligosaccharides and polysaccharides may not be limited to transfer within a single monosaccharide moiety, but may also involve migration over a glycosidic bond between two different saccharide units. The observed phenomenon is not only interesting from the chemical point of view, but it also raises new questions about the potential biological role of acylated carbohydrates in nature.


Assuntos
Oligossacarídeos/química , Acetilação , Configuração de Carboidratos , Manose/química , Modelos Moleculares
6.
Mol Pharm ; 16(8): 3600-3608, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31199662

RESUMO

Monomethyl auristatin E and monomethyl auristatin F are widely used cytotoxic agents in antibody-drug conjugates (ADCs), a group of promising cancer drugs. The ADCs specifically target cancer cells, releasing the auristatins inside, which results in the prevention of mitosis. The auristatins suffer from a potentially serious flaw, however. In solution, the molecules exist in an equal mixture of two conformers, cis and trans. Only the trans-isomer is biologically active and the isomerization process, i.e., the conversion of cis to trans is slow. This significantly diminishes the efficiency of the drugs and their corresponding ADCs, and perhaps more importantly, raises concerns over drug safety. The potency of the auristatins would be enhanced by decreasing the amount of the biologically inactive isomer, either by stabilizing the trans-isomer or destabilizing the cis-isomer. Here, we follow the computer-aided design strategy of shifting the conformational equilibrium and employ high-level quantum chemical modeling to identify promising candidates for improved auristatins. Coupled cluster calculations predict that a simple halogenation in the norephedrine/phenylalanine residues shifts the isomer equilibrium almost completely toward the active trans-conformation, due to enhanced intramolecular interactions specific to the active isomer.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Imunoconjugados/química , Oligopeptídeos/química , Química Farmacêutica/métodos , Desenho Assistido por Computador , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
7.
Angew Chem Int Ed Engl ; 57(2): 486-490, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-28980372

RESUMO

Tudor domains bind to dimethylarginine (DMA) residues, which are post-translational modifications that play a central role in gene regulation in eukaryotic cells. NMR spectroscopy and quantum calculations are combined to demonstrate that DMA recognition by Tudor domains involves conformational selection. The binding mechanism is confirmed by a mutation in the aromatic cage that perturbs the native recognition mode of the ligand. General mechanistic principles are delineated from the combined results, indicating that Tudor domains utilize cation-π interactions to achieve ligand recognition.


Assuntos
Arginina/análogos & derivados , Neurônios Motores/metabolismo , Domínio Tudor , Arginina/química , Arginina/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Teoria Quântica , Termodinâmica
8.
J Am Chem Soc ; 139(45): 16282-16288, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29017321

RESUMO

Complex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery. In order to probe the energetics, dynamics, and molecular mechanism for the proton-coupled electron transfer process linked to the Q reduction, we employ here multiscale quantum and classical molecular simulations. We identify that both ubiquinone (UQ) and menaquinone (MQ) can form stacking and hydrogen-bonded interactions with the conserved Q-binding-site residue His-38 and that conformational changes between these binding modes modulate the Q redox potentials and the rate of electron transfer (eT) from the terminal N2 iron-sulfur center. We further observe that, while the transient formation of semiquinone is not proton-coupled, the second eT process couples to a semiconcerted proton uptake from conserved tyrosine (Tyr-87) and histidine (His-38) residues within the active site. Our calculations indicate that both UQ and MQ have low redox potentials around -260 and -230 mV, respectively, in the Q-binding site, respectively, suggesting that release of the Q toward the membrane is coupled to an energy transduction step that could thermodynamically drive proton pumping in complex I.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Elétrons , Prótons , Quinonas/metabolismo , Transporte de Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
9.
Phys Rev Lett ; 113(7): 073005, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170706

RESUMO

The torsional motion of a molecule composed of two substituted benzene rings, linked by a single bond, is coherently controlled by a pair of strong (3×10^{13} W cm^{-2}), nonresonant (800 nm) 200-fs-long laser pulses-both linearly polarized perpendicular to the single-bond axis. If the second pulse is sent at the time when the two benzene rings rotate toward (away from) each other the amplitude of the torsion is strongly enhanced (reduced). The torsional motion persists for more than 150 ps corresponding to approximately 120 torsional oscillations. Our calculations show that the key to control is the strong transient modification of the natural torsional potential by the laser-induced dynamic Stark effect.

10.
Phys Chem Chem Phys ; 15(27): 11543-53, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23752704

RESUMO

By analysing the properties of the electron density in the structurally simple perhalogenated ethanes, X3C-CY3 (X, Y = F, Cl), a previously overlooked non-covalent attraction between halogens attached to opposite carbon atoms is found. Quantum chemical calculations extrapolated towards the full solution of the Schrödinger equation reveal the complex nature of the interaction. When at least one of the halogens is a chlorine, the strength of the interaction is comparable to that of hydrogen bonds. Further analysis shows that the bond character is quite different from standard non-covalent halogen bonds and hydrogen bonds; no bond critical points are found between the halogens, and the σ-holes of the halogens are not utilised for bonding. Thus, the nature of the intramolecular halogen···halogen bonding studied here appears to be of an unusually strong van der Waals type.

11.
Proc Natl Acad Sci U S A ; 107(50): 21470-5, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21106766

RESUMO

Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain that catalyzes respiratory reduction of dioxygen (O(2)) to water in all eukaryotes and many aerobic bacteria. CcO, and its homologs among the heme-copper oxidases, has an active site composed of an oxygen-binding heme and a copper center in the vicinity, plus another heme group that donates electrons to this site. In most oxidoreduction enzymes, electron transfer (eT) takes place by quantum-mechanical electron tunneling. Here we show by independent molecular dynamics and quantum-chemical methods that the heme-heme eT in CcO differs from the majority of cases in having an exceptionally low reorganization energy. We show that the rate of interheme eT in CcO may nevertheless be predicted by the Moser-Dutton equation if reinterpreted as the average of the eT rates between all individual atoms of the donor and acceptor weighed by the respective packing densities between them. We argue that this modification may be necessary at short donor/acceptor distances comparable to the donor/acceptor radii.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Elétrons , Heme/química , Cobre/química , Transporte de Elétrons , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxirredução , Oxigênio/química , Conformação Proteica , Teoria Quântica
12.
Phys Chem Chem Phys ; 14(43): 14905-10, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22986618

RESUMO

We report here a systematic study on the ability of molecular cages to bind (transition) metals. Starting from the superferrocenophane we investigate the incorporation of first-row transition metal (Sc-Zn) and alkaline-earth metal (Mg, Ca) double cations into these supermetallocenophane (super[5]phane) cages, and compare them with the corresponding metallocenes (Inorg. Chim. Acta, 2007, 360, 179). Moreover, we also investigate the binding of neutral and double-cationic metals inside supermetallocyclophane (super[6]phane) cages. The heterolytic and homolytic associations show preferences for different metals, and new metal-containing cages are proposed that should be viable candidates for synthesis.

13.
J Chem Phys ; 136(20): 204310, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667563

RESUMO

We study how the combination of long and short laser pulses can be used to induce torsion in an axially chiral biphenyl derivative (3,5-difluoro-3',5'-dibromo-4'-cyanobiphenyl). A long, with respect to the molecular rotational periods, elliptically polarized laser pulse produces 3D alignment of the molecules, and a linearly polarized short pulse initiates torsion about the stereogenic axis. The torsional motion is monitored in real-time by measuring the dihedral angle using femtosecond time-resolved Coulomb explosion imaging. Within the first 4 picoseconds (ps), torsion occurs with a period of 1.25 ps and an amplitude of 3° in excellent agreement with theoretical calculations. At larger times, the quantum states of the molecules describing the torsional motion dephase and an almost isotropic distribution of the dihedral angle is measured. We demonstrate an original application of covariance analysis of two-dimensional ion images to reveal strong correlations between specific ejected ionic fragments from Coulomb explosion. This technique strengthens our interpretation of the experimental data.

14.
Chem Biodivers ; 9(9): 1728-38, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22976965

RESUMO

UV/VIS Electron excitation spectra have been computed for large, realistic model systems of the blue copper protein family. Fully quantum-chemical calculations at the density-functional theory level employing polarized triple-ζ basis sets have been performed on systems of over 120 atoms, without symmetry. Different mutants, with the ligating methionine of the wild type Cu center exchanged for histidine (M121H) and glutamine (M121Q), have been investigated in order to obtain insight about how the influence of the exact surrounding milieu of the Cu-atom affects the computed spectrum. With sufficiently large model sizes, inclusion of the environment by using continuum solvation models do not change the spectra significantly. More direct and rigorous treatments are needed to reliably assess the effect of the surrounding protein on the electronic structure of the active sites.


Assuntos
Proteínas de Transporte/química , Cobre/química , Mutação , Teoria Quântica , Azurina/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Cobre/metabolismo , Modelos Moleculares , Espectrofotometria Ultravioleta
15.
ACS Omega ; 7(34): 30376-30388, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061667

RESUMO

Glucose- and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained the most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT). Here, we report on surprising findings encountered with a set of 6-deoxy-6-thio-carboranyl d-glucoconjugates. In more detail, we show that even subtle structural changes in the carborane cluster, and the linker, may significantly reduce the delivery capacity of GLUT1-based boron carriers. In addition to providing new insights on the substrate specificity of this important transporter, we reach a fresh perspective on the boundaries within which a GLUT1-targeting approach in BNCT can be further refined.

16.
Biochim Biophys Acta ; 1787(4): 221-33, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19388139

RESUMO

The CuB metal center is at the core of the active site of the heme-copper oxidases, comprising a copper atom ligating three histidine residues one of which is covalently bonded to a tyrosine residue. Using quantum chemical methodology, we have studied the CuB site in several redox and ligand states proposed to be intermediates of the catalytic cycle. The importance of the His-Tyr crosslink was investigated by comparing energetics, charge, and spin distributions between systems with and without the crosslink. The His-Tyr bond was shown to decrease the proton affinity and increase the electron affinity of both Tyr-244 and the copper. A previously unnoticed internal electronic equilibrium between the copper atom and the tyrosine was observed, which seems to be coupled to the unique structure of the system. In certain states the copper and Tyr-244 compete for the unpaired electron, the localization of which is determined by the oxygenous ligand of the copper. This electronic equilibrium was found to be sensitive to the presence of a positive charge 10 A away from the center, simulating the effect of Lys-319 in the K-pathway of proton transfer. The combined results provide an explanation for why the heme-copper oxidases need two pathways of proton uptake, and why the K-pathway is active only in the second half of the reaction cycle.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Histidina/metabolismo , Tirosina/metabolismo , Animais , Biocatálise , Domínio Catalítico , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Elétrons , Ligantes , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Prótons , Marcadores de Spin , Eletricidade Estática , Termodinâmica
17.
Proc Natl Acad Sci U S A ; 104(52): 20811-4, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18087041

RESUMO

Biological electron transfer (eT) between redox-active cofactors is thought to occur by quantum-mechanical tunneling. However, in many cases the observed rate is limited by other reactions coupled to eT, such as proton transfer, conformational changes, or catalytic chemistry at an active site. A prominent example of this phenomenon is the eT between the heme groups of mitochondrial cytochrome c oxidase, which has been reported to take place in several different time domains. The question of whether pure eT tunneling in the nanosecond regime between the heme groups can be observed has been the subject of some experimental controversy. Here, we report direct observations of eT between the heme groups of the quinol oxidase cytochrome bo(3) from Escherichia coli, where the reaction is initiated by photolysis of carbon monoxide from heme o(3). eT from CO-dissociated ferrous heme o(3) to the low-spin ferric heme b takes place at a rate of (1.2 ns)(-1) at 20 degrees C as determined by optical spectroscopy. These results establish heme-heme electron tunneling in the bo(3) enzyme, a bacterial relative to the mitochondrial cytochrome c oxidase. The properties of eT between the closely lying heme groups in the heme-copper oxidases are discussed in terms of the reorganization energy for the process, and two methods for assessing the rate of electron tunneling are presented.


Assuntos
Cobre/química , Citocromos/química , Heme/química , Nanotecnologia/métodos , Oxirredutases/química , Grupo dos Citocromos b , Transporte de Elétrons , Elétrons , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli , Luz , Conformação Molecular , Consumo de Oxigênio , Fotoquímica/métodos , Fotólise , Software , Espectrofotometria/métodos , Fatores de Tempo
18.
RSC Adv ; 11(1): 425-432, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35423068

RESUMO

Rational design of artificial water-splitting catalysts is central for developing new sustainable energy technology. However, the catalytic efficiency of the natural light-driven water-splitting enzyme, photosystem II, has been remarkably difficult to achieve artificially. Here we study the molecular mechanism of ruthenium-based molecular catalysts by integrating quantum chemical calculations with inorganic synthesis and functional studies. By employing correlated ab initio calculations, we show that the thermodynamic driving force for the catalysis is obtained by modulation of π-stacking dispersion interactions within the catalytically active dimer core, supporting recently suggested mechanistic principles of Ru-based water-splitting catalysts. The dioxygen bond forms in a semi-concerted radical coupling mechanism, similar to the suggested water-splitting mechanism in photosystem II. By rationally tuning the dispersion effects, we design a new catalyst with a low activation barrier for the water-splitting. The catalytic principles are probed by synthesis, structural, and electrochemical characterization of the new catalyst, supporting enhanced water-splitting activity under the examined conditions. Our combined findings show that modulation of dispersive interactions provides a rational catalyst design principle for controlling challenging chemistries.

19.
J Phys Chem C Nanomater Interfaces ; 124(44): 24441-24450, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33193943

RESUMO

Spontaneous growth of complexes consisted of a number of individual nanoparticles in a controlled manner, particularly in demanding environments of gas-phase synthesis, is a fascinating opportunity for numerous potential applications. Here, we report the formation of such core-satellite gold nanoparticle structures grown by magnetron sputtering inert gas condensation. Combining high-resolution scanning transmission electron microscopy and computational simulations, we reveal the adhesive and screening role of H2O molecules in formation of stable complexes consisted of one nanoparticle surrounded by smaller satellites. A single layer of H2O molecules, condensed between large and small gold nanoparticles, stabilizes positioning of nanoparticles with respect to one another during milliseconds of the synthesis time. The lack of isolated small gold nanoparticles on the substrate is explained by Brownian motion that is significantly broader for small-size particles. It is inferred that H2O as an admixture in the inert gas condensation opens up possibilities of controlling the final configuration of the different noble metal nanoparticles.

20.
Chemistry ; 15(47): 13210-8, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19856348

RESUMO

By combining the intriguing geometrical properties of two classes of well-established molecules, the metallocenes and the helicenes, we propose a hybrid class of structures-the metallohelicenes. In these, the outer most aryl groups of a specific helicene are glued together by a complexing metal atom. This effectively fixes the chirality of the parent helicene, which otherwise easily undergoes thermal racemization. The fixed chirality suggests several interesting applications, ranging from building blocks of stable molecules with high circular dichroism and optical activity to chiral ligands and catalysts. Alternatively, the metal glue can trap the non-chiral transition state structure of helicene. High-level quantum chemical calculations show the readiness of formation and stability of the proposed complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA