RESUMO
Influenza causes >250,000 deaths annually in the industrialized world, and bacterial infections frequently cause secondary illnesses during influenza outbreaks, including pneumonia, bronchitis, sinusitis, and otitis media. In this study, we demonstrate that cross-reactive immunity to mismatched influenza strains can reduce susceptibility to secondary bacterial infections, even though this fails to prevent influenza infection. Specifically, infecting mice with H3N2 influenza before challenging with mismatched H1N1 influenza reduces susceptibility to either Gram-positive Streptococcus pneumoniae or Gram-negative Klebsiella pneumoniae. Vaccinating mice with the highly conserved nucleoprotein of influenza also reduces H1N1-induced susceptibility to lethal bacterial infections. Both T cells and Abs contribute to defense against influenza-induced bacterial diseases; influenza cross-reactive T cells reduce viral titers, whereas Abs to nucleoprotein suppress induction of inflammation in the lung. These findings suggest that nonneutralizing influenza vaccines that fail to prevent influenza infection may nevertheless protect the public from secondary bacterial diseases when neutralizing vaccines are not available.
Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Proteínas do Nucleocapsídeo/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia , Linfócitos T/imunologia , Animais , Reações Cruzadas , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Humanos , Influenza Humana/imunologia , Influenza Humana/microbiologia , Camundongos , Infecções por Orthomyxoviridae/microbiologiaRESUMO
BACKGROUND: Ageing has been shown to reduce CD8 T cell repertoire diversity and immune responses against influenza virus infection in mice. In contrast, less is known about the impact of ageing on CD4 T cell repertoire diversity and immune response to influenza virus infection. RESULTS: The CD4 T cell response was followed after infection of young and aged C57BL/6 mice with influenza virus using a tetramer specific for an immunodominant MHC class II epitope of the influenza virus nucleoprotein. The appearance of virus-specific CD4 T cells in the lung airways of aged mice was delayed compared to young mice, but the overall peak number and cytokine secretion profile of responding CD4 T cells was not greatly perturbed. In addition, the T cell repertoire of responding cells, determined using T cell receptor Vß analysis, failed to show the profound effect of age we previously described for CD8 T cells. The reduced impact of age on influenza-specific CD4 T cells was consistent with a reduced effect of age on the overall CD4 compared with the CD8 T cell repertoire in specific pathogen free mice. Aged mice that were thymectomized as young adults showed an enhanced loss of the epitope-specific CD4 T cell response after influenza virus infection compared with age-matched sham-thymectomized mice, suggesting that a reduced repertoire can contribute to impaired responsiveness. CONCLUSIONS: The diversity of the CD4 T cell repertoire and response to influenza virus is not as profoundly impaired by ageing in C57BL/6 mice as previously shown for CD8 T cells. However, adult thymectomy enhanced the impact of ageing on the response. Understanding the impact of ageing on CD4 T cell responses to influenza virus infection is an important prerequisite for developing better vaccines for the elderly.
RESUMO
In mice infected sublethally with Listeria monocytogenes, fibrin is deposited at low levels within hepatic tissue, where it functions protectively by limiting bacterial growth and suppressing hemorrhagic pathology. Here we demonstrate that mice infected with lethal doses of L. monocytogenes produce higher levels of fibrin and display evidence of systemic coagulopathy (i.e., thrombocytopenia, fibrinogen depletion, and elevated levels of thrombin-antithrombin complexes). When the hepatic bacterial burden exceeds 1×10(6) CFU, levels of hepatic fibrin correlate with the bacterial burden, which also correlates with levels of hepatic mRNA encoding the hemostatic enzyme factor XI (FXI). Gene-targeted FXI-deficient mice show significantly improved survival upon challenge with high doses of L. monocytogenes and also display reduced levels of hepatic fibrin, decreased evidence of coagulopathy, and diminished cytokine production (interleukin-6 [IL-6] and IL-10). While fibrin limits the bacterial burden during sublethal listeriosis in wild-type mice, FXI-deficient mice display a significantly improved capacity to restrain the bacterial burden during lethal listeriosis despite their reduced fibrin levels. They also show less evidence of hepatic necrosis. In conjunction with suboptimal antibiotic therapy, FXI-specific monoclonal antibody 14E11 improves survival when administered therapeutically to wild-type mice challenged with high doses of L. monocytogenes. Together, these findings demonstrate the utility of murine listeriosis as a model for dissecting qualitative differences between protective and pathological host responses and reveal novel roles for FXI in exacerbating inflammation and pathogen burden during a lethal bacterial infection.
Assuntos
Deficiência do Fator XI , Listeria monocytogenes/patogenicidade , Listeriose/patologia , Animais , Antibacterianos/uso terapêutico , Anticorpos/uso terapêutico , Coagulação Intravascular Disseminada/microbiologia , Quimioterapia Combinada , Inflamação/patologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/tratamento farmacológico , Listeriose/mortalidade , Fígado/microbiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida , Resultado do TratamentoRESUMO
With age, T-cell generation from the thymus is much reduced, yet a substantial naïve T-cell pool is maintained even in aged animals, suggesting that naïve T cells either persist longer or turn over faster to maintain T-cell homeostasis. We found that with age, naïve CD4 T cells became progressively longer-lived. Their longer lifespan did not depend on recognition of self-peptide/class II. Newly generated naïve T cells derived from aged stem cells had a shorter lifespan, like that of young naïve T cells. Conversely, naïve CD4 T cells derived from middle-aged thymectomized mice were longer-lived in vivo, and their development of functional defects was accelerated. These observations suggest that naïve T cells develop their longer lifespan during their sojourn in the periphery. Increased longevity of naïve CD4 T cells correlated well with reduced expression of proapoptotic molecule Bim. We suggest that the intrinsic increase in longevity helps maintain naïve T-cell homeostasis but facilitates the development of functional defects in mice.
Assuntos
Envelhecimento , Linfócitos T CD4-Positivos/imunologia , Homeostase , Imunidade Inata , Linfócitos T/imunologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Linfócitos T CD4-Positivos/citologia , Sobrevivência Celular , Antígenos de Histocompatibilidade/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/citologia , TimectomiaRESUMO
Zika virus (ZIKV) is a mosquito-borne arbovirus that can cause severe congenital birth defects. The utmost goal of ZIKV vaccines is to prevent both maternal-fetal infection and congenital Zika syndrome. A Zika purified inactivated virus (ZPIV) was previously shown to be protective in non-pregnant mice and rhesus macaques. In this study, we further examined the efficacy of ZPIV against ZIKV infection during pregnancy in immunocompetent C57BL6 mice and common marmoset monkeys (Callithrix jacchus). We showed that, in C57BL/6 mice, ZPIV significantly reduced ZIKV-induced fetal malformations. Protection of fetuses was positively correlated with virus-neutralizing antibody levels. In marmosets, the vaccine prevented vertical transmission of ZIKV and elicited neutralizing antibodies that remained above a previously determined threshold of protection for up to 18 months. These proof-of-concept studies demonstrate ZPIV's protective efficacy is both potent and durable and has the potential to prevent the harmful consequence of ZIKV infection during pregnancy.
RESUMO
Natural regulatory T cells (Tregs) constitutively express the IL-2R alpha-chain (CD25) on their surface. Consequently, administration of anti-CD25 Abs is a commonly used technique to deplete Treg populations in vivo. However, activated effector T cells may also transiently express CD25, and are thus also potential targets for anti-CD25 Abs. In this study using Toxoplasma gondii as a model proinflammatory infection, we have examined the capacity of anti-CD25 Abs to target effector T cell populations during an inflammatory episode, to determine to what extent that this action may modulate the outcome of disease. Anti-CD25 Ab-treated C57BL/6 mice displayed significantly reduced CD4(+) T cell IFN-gamma production during acute T. gondii infection and exhibited reduced weight loss and liver pathology during early acute infection; aspects of infection previously associated with effector CD4(+) T cell responses. In agreement, anti-CD25 Ab administration impaired parasite control and caused mice to succumb to infection during late acute/early chronic stages of infection with elevated tissue parasite burdens. In contrast, anti-CD25 Ab treatment of mice with established chronic infections did not markedly affect brain parasite burdens, suggesting that protective T cell populations do not express CD25 during chronic stages of T. gondii infection. In summary, we have demonstrated that anti-CD25 Abs may directly abrogate effector T cell responses during an inflammatory episode, highlighting important limitations of the use of anti-CD25 Ab administration to examine Treg function during inflammatory settings.
Assuntos
Anticorpos Monoclonais/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasmose/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Toxoplasmose/patologiaRESUMO
There are well-characterized age-related changes in the peripheral repertoire of CD8 T cells characterized by reductions in the ratio of naive:memory T cells and the development of large clonal expansions in the memory pool. In addition, the TCR repertoire of naive T cells is reduced with aging. Because a diverse repertoire of naive T cells is essential for a vigorous response to new infections and vaccinations, there is much interest in understanding the mechanisms responsible for declining repertoire diversity. It has been proposed that one reason for declining repertoire diversity in the naive T cell pool is an increasing dependence on homeostatic proliferation in the absence of new thymic emigrants for maintenance of the naive peripheral pool. In this study, we have analyzed the naive CD8 T cell repertoire in young and aged mice by DNA spectratype and sequence analysis. Our data show that naive T cells from aged mice have perturbed spectratype profiles compared with the normally Gaussian spectratype profiles characteristic of naive CD8 T cells from young mice. In addition, DNA sequence analysis formally demonstrated a loss of diversity associated with skewed spectratype profiles. Unexpectedly, we found multiple repeats of the same sequence in naive T cells from aged but not young mice, consistent with clonal expansions previously described only in the memory T cell pool. Clonal expansions among naive T cells suggests dysregulation in the normal homeostatic proliferative mechanisms that operate in young mice to maintain diversity in the naive T cell repertoire.
Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Receptores de Antígenos de Linfócitos T/biossíntese , Envelhecimento/genética , Animais , Linfócitos T CD8-Positivos/citologia , Separação Celular , Células Clonais , Regiões Determinantes de Complementaridade/biossíntese , Regiões Determinantes de Complementaridade/genética , Feminino , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Homeostase/imunologia , Memória Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/imunologiaRESUMO
Fibrin, a product of the blood coagulation cascade, accompanies many type 1 immune responses, including delayed-type hypersensitivity, autoimmunity, and graft rejection. In those settings, fibrin is thought to exacerbate inflammation and disease. Here, we evaluate roles for coagulation during infection with Toxoplasma gondii, a pathogen whose control requires robust type 1 immunity. We establish that fibrin prevents infection-stimulated blood loss, thereby performing a protective function that is essential for survival. Remarkably, fibrin does not simply protect against vascular damage caused directly by the infectious agent, but rather, protects against hemorrhage evoked by interferon-gamma, a critical mediator of type 1 immunity. This finding, to our knowledge, is the first to document a beneficial role for coagulation during type 1 immunity, and suggests that fibrin deposition protects host tissue from collateral damage caused by the immune system as it combats infection.
Assuntos
Coagulação Sanguínea/fisiologia , Fibrina/metabolismo , Imunidade/fisiologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Fibrina/genética , Fibrina/imunologia , Interferon gama/metabolismo , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taxa de SobrevidaRESUMO
Vaccinating with live, conditionally attenuated, pigmentation (Pgm)-deficient Yersinia pestis primes T cells that protect mice against pneumonic plague. However, Pgm-deficient strains are not considered safe for human use because they retain substantial virulence in animal models. Y. pestis strains engineered to express Escherichia coli LpxL are avirulent owing to constitutive production of lipopolysaccharide with increased Toll-like receptor 4-activating ability. We generated an LpxL-expressing Pgm-deficient strain (D27-pLpxL) and demonstrate here that this avirulent strain retains the capacity to prime protective T cells. Compared with unvaccinated controls, mice immunized intranasally with live D27-pLpxL exhibit a decreased bacterial burden and increased survival when challenged intranasally with virulent Y. pestis. T cells provide a substantial degree of this protection, as vaccine efficacy is maintained in B-cell-deficient muMT mice unless those animals are depleted of CD4 and CD8 T cells at the time of challenge. Upon challenge with Y. pestis, pulmonary T-cell numbers decline in naive mice, whereas immunized mice show increased numbers of CD44(high) CD43(high) effector T cells and T cells primed to produce tumor necrosis factor alpha and gamma interferon; neutralizing these cytokines at the time of challenge abrogates protection. Immunization does not prevent dissemination of Y. pestis from the lung but limits bacterial growth and pathology in visceral tissue, apparently by facilitating formation of granuloma-like structures. This study describes a new model for studying T-cell-mediated protection against pneumonic plague and demonstrates the capacity for live, highly attenuated, Y. pestis vaccine strains to prime protective memory T-cell responses safely.
Assuntos
Aciltransferases/biossíntese , Vacinas Bacterianas/imunologia , Proteínas de Escherichia coli/biossíntese , Ativação Linfocitária , Peste/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/microbiologia , Yersinia pestis/imunologia , Aciltransferases/genética , Administração Intranasal , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Contagem de Colônia Microbiana , Proteínas de Escherichia coli/genética , Feminino , Receptores de Hialuronatos/análise , Interferon gama/biossíntese , Leucossialina/análise , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Peste/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sobrevida , Subpopulações de Linfócitos T/química , Subpopulações de Linfócitos T/imunologia , Linfócitos T/química , Fator de Necrose Tumoral alfa/biossíntese , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Yersinia pestis/genéticaRESUMO
Surviving infection represents a balance between the proinflammatory responses needed to eliminate the pathogen, and anti-inflammatory signals limiting damage to the host. IL-10 is a potent immunosuppressive cytokine whose impact is determined by the timing and localization of release. We show that NK cells rapidly express IL-10 during acute infection with diverse rapidly disseminating pathogens. The proinflammatory cytokine IL-12 was necessary and sufficient for NK cell induction of IL-10. NK cells from mice with systemic parasitic infection inhibited dendritic cell release of IL-12 in an IL-10-dependent manner, and NK cell depletion resulted in elevated serum IL-12. These data suggest an innate, negative feedback loop in which IL-12 limits its own production by eliciting IL-10 from NK cells. In contrast to disseminating pathogens, locally restricted infections did not elicit NK cell IL-10. Thus systemic infections uniquely engage NK cells in an IL-10-mediated immunoregulatory circuit that functions to alleviate inflammation.
Assuntos
Imunossupressores/imunologia , Infecções/imunologia , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Animais , Células Cultivadas , Expressão Gênica , Infecções/microbiologia , Infecções/parasitologia , Interleucina-10/genética , Interleucina-12/genética , Interleucina-12/imunologia , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma/imunologia , Yersinia pestis/imunologiaRESUMO
Yersinia pestis causes pneumonic plague, an exceptionally virulent disease for which we lack a safe and effective vaccine. Antibodies specific for the Y. pestis F1 and LcrV proteins can protect mice against pulmonary Y. pestis infection. We demonstrate that neutralizing tumor necrosis factor-alpha (TNFalpha) and gamma-interferon (IFNgamma) abrogates this protection at sub-optimal levels of F1- or LcrV-specific antibody, but not at optimal levels. Moreover, we demonstrate that endogenous TNFalpha and IFNgamma confer measurable protection in the complete absence of protective antibodies. These findings indicate that antibodies and cytokines independently protect against pneumonic plague and suggest that surrogate assays for plague vaccine efficacy should consider both the level of vaccine-induced antibody and the capacity of vaccine recipients to produce TNFalpha and IFNgamma upon exposure to Y. pestis.
Assuntos
Anticorpos Antibacterianos/imunologia , Citocinas/uso terapêutico , Vacina contra a Peste/uso terapêutico , Peste/prevenção & controle , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Monoclonais/farmacologia , Antígenos de Bactérias/imunologia , Linfócitos B/fisiologia , Proteínas de Bactérias/imunologia , Relação Dose-Resposta Imunológica , Determinação de Ponto Final , Soros Imunes/farmacologia , Interferon gama/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peste/microbiologia , Vacina contra a Peste/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Fator de Necrose Tumoral alfa/uso terapêutico , Yersinia pestis/imunologiaRESUMO
CD8+ T cells are a major source of IFN-gamma, a key effector cytokine in immune responses against many viruses and protozoa. Although the transcription factor T-bet is required for IFN-gamma expression in CD4+ T cells, it is reportedly dispensable in CD8+ T cells, where the transcription factor Eomesodermin is thought to be sufficient. The diverse functions of IFN-gamma are mediated through the IFN-gammaR and STAT1. In CD4+ T cells, STAT1 appears to be critical for the activation of T-bet and IFN-gamma, suggesting an IFN-gamma-dependent positive feedback loop. However, STAT1 can also be activated by other cytokines, including IL-27. In the present study we show that, in contrast to in vitro conditions and the prevailing paradigm, T-bet is critical for the in vivo IFN-gamma production by CD8+ T cells upon infection of mice with diverse pathogens. Whereas IFN-gammaR signals are dispensable for the T-bet-dependent IFN-gamma production, direct IL-27Ralpha signals are critical.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções/imunologia , Interferon gama/metabolismo , Receptores de Citocinas/fisiologia , Proteínas com Domínio T/fisiologia , Animais , Humanos , Infecções/microbiologia , Infecções/parasitologia , Influenza Humana/imunologia , Interferon gama/genética , Camundongos , Camundongos Mutantes , Receptores de Citocinas/genética , Receptores de Interleucina , Fator de Transcrição STAT1/metabolismo , Proteínas com Domínio T/genética , Toxoplasmose/imunologiaRESUMO
Impaired erythropoiesis causes anemia during genetic disorders, chronic disease, and infection. In studies of the underlying mechanisms researchers have increasingly focused on gamma interferon (IFN-gamma). Here, we identified a previously unrecognized role for interleukin-15 (IL-15) in red blood cell homeostasis and demonstrated that IFN-gamma and signal transducer and activator of transcription protein 1-dependent pathways up-regulate expression of IL-15 in vivo. These findings identified new therapeutic targets for anemia.
Assuntos
Anemia , Eritropoese/efeitos dos fármacos , Interferon gama/farmacologia , Interleucina-15/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose Animal/fisiopatologia , Anemia/parasitologia , Anemia/fisiopatologia , Animais , Células da Medula Óssea , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/metabolismo , Toxoplasmose Animal/parasitologia , Regulação para CimaRESUMO
While coagulation often causes pathology during infectious disease, we recently demonstrated that fibrin, a product of the coagulation pathway, performs a critical protective function during acute toxoplasmosis (L. L. Johnson, K. N. Berggren, F. M. Szaba, W. Chen, and S. T. Smiley, J. Exp. Med. 197:801-806, 2003). Here, we investigate the mechanisms regulating the formation of this protective fibrin. Through comparisons of Toxoplasma-infected wild-type and cytokine-deficient mice we dissociate, for the first time, the relative fibrin-regulating capacities of pathogen products, host cytokines, and infection-stimulated hemorrhage. Remarkably, neither the pathogen burden nor hemorrhage is a primary regulator of fibrin levels. Rather, two type 1 cytokines exert dominant and counterregulatory roles: tumor necrosis factor alpha (TNF-alpha), acting via the type 1 TNF-alpha receptor, promotes fibrin deposition, while gamma interferon (IFN-gamma), acting via STAT1 and IFN-gamma receptors expressed on radioresistant cells, suppresses fibrin deposition. These findings have important clinical implications, as they establish that cytokines known to regulate pathological coagulation also dictate levels of protective fibrin deposition. We present a novel model depicting mechanisms by which the immune system can destroy infected tissue while independently restraining hemorrhage and promoting tissue repair through the deliberate deposition of protective fibrin.
Assuntos
Fibrina/metabolismo , Regulação da Expressão Gênica/imunologia , Interferon gama/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Doença Aguda , Animais , Fibrina/imunologia , Hemorragia/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/isolamento & purificação , Toxoplasmose/parasitologia , Toxoplasmose/patologiaRESUMO
An important role for immunoglobulin M (IgM) during early acute virulent Toxoplasma gondii infection was identified using IgM-/- mice that lack surface and secretory IgM but maintain normal B-cell functionality and isotype class switching. Following intraperitoneal inoculation with the virulent RH strain, IgM-/- mice displayed significantly fewer peritoneal parasites than wild-type (WT) mice, which correlated with increased tachyzoite dissemination to the liver, lung, and spleen in IgM-/- mice compared with WT mice. Early splenic T-cell activation, as measured by CD69 expression, was augmented in IgM-/- mice, and serum and peritoneal cavity gamma interferon levels were also elevated in IgM-/- mice compared with WT controls. Consequently, the difference in parasite dissemination was not attributable to an impaired proinflammatory immune response in the IgM-/- mice. Specific IgM was found to bind to tachyzoites in vivo in WT mice, and this correlated with an increased ability of antiserum collected from WT mice at day 6 postinfection to block tachyzoite cell invasion, compared with comparable serum collected from IgM-/- mice at the same time point. Tachyzoite invasion of host cells was similar if parasites were incubated with WT or IgM-/- nonimmune serum, suggesting that natural IgM does not function to limit parasite dissemination during early T. gondii infection. Our results highlight an important role for parasite-specific IgM in limiting systemic dissemination of tachyzoites during early acute T. gondii infection.
Assuntos
Anticorpos Antiprotozoários/imunologia , Imunoglobulina M/imunologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Animais , Anticorpos Antiprotozoários/genética , Proteínas do Sistema Complemento/imunologia , Soros Imunes/imunologia , Imunoglobulina M/genética , Fígado/parasitologia , Pulmão/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Baço/parasitologia , Linfócitos T/imunologia , VirulênciaRESUMO
The expression of IFN-gamma is a hallmark of Th1 cells and CD8(+) effector T cells and is the signature cytokine of type 1 responses. However, it is not known whether T cells are homogeneous in their capacity to produce IFN-gamma, whether this potential varies between tissues, and how it relates to the production of other effector molecules. In the present study we used bicistronic IFN-gamma-enhanced yellow fluorescent protein (IFN-gamma-eYFP) reporter mice (Yeti) and MHC class I tetramers to directly quantify IFN-gamma expression at the single cell level. The eYFP fluorescence of Th1 cells and CD8(+) effector T cells was broadly heterogeneous even before cell division and correlated with both the abundance of IFN-gamma transcripts and the secretion of IFN-gamma upon stimulation. CD4(+) and CD8(+) T cells of influenza-infected mice revealed a similarly heterogeneous IFN-gamma expression, and eYFP(high) cells were only found in the infected lung. Ag-specific T cells were in all examined tissues eYFP(+), but also heterogeneous in their reporter fluorescence, and eYFP(high) cells were also restricted to the infected lung. A similar heterogeneity was observed in Toxoplasma gondii-infected animals, but eYFP(high) cells were restricted to different tissues. Highly eYFP fluorescent cells produced elevated levels of proinflammatory cytokines and chemokines in addition to IFN-gamma, suggesting their coregulated expression as a functional unit in highly differentiated effector T cells.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interferon gama/biossíntese , Infecções por Orthomyxoviridae/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Toxoplasmose Animal/imunologia , Animais , Antígenos de Diferenciação de Linfócitos T/biossíntese , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/parasitologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Quimiocinas/biossíntese , Quimiocinas/fisiologia , Citocinas/biossíntese , Citocinas/fisiologia , Relação Dose-Resposta Imunológica , Genes Reporter/imunologia , Interferon gama/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Células Th1/parasitologia , Células Th1/virologia , Toxoplasmose Animal/genética , Toxoplasmose Animal/metabolismoRESUMO
Mice lacking functional CD1d genes were used to study mechanisms of resistance to the protozoan parasite Toxoplasma gondii. Wild-type (WT) BALB/c mice, CD1d-deficient BALB/c mice, and WT C57BL/6 mice all survived an acute oral infection with a low dose of mildly virulent strain ME49 T. gondii cysts. In contrast, most CD1d-deficient C57BL/6 mice died within 2 wk of infection. Despite having parasite burdens that were only slightly higher than WT mice, CD1d-deficient C57BL/6 mice displayed greater weight loss and intestinal pathology. In C57BL/6 mice, CD4(+) cells can cause intestinal pathology during T. gondii infection. Compared with WT mice, infected CD1d-deficient C57BL/6 mice had higher frequencies and numbers of activated (CD44(high)) CD4(+) cells in mesenteric lymph nodes. Depletion of CD4(+) cells from CD1d-deficient mice reduced weight loss and prolonged survival, demonstrating a functional role for CD4(+) cells in their increased susceptibility to T. gondii infection. CD1d-deficient mice are deficient in Valpha14(+) T cells, a major population of NKT cells. Involvement of these cells in resistance to T. gondii was investigated using gene-targeted Jalpha18-deficient C57BL/6 mice, which are deficient in Valpha14(+) T cells. These mice did not succumb to acute infection, but experienced greater weight loss and more deaths than B6 mice during chronic infection, indicating that Valpha14(+) cells contribute to resistance to T. gondii. The data identify CD4(+) cells as a significant component of the marked susceptibility to T. gondii infection observed in CD1d-deficient C57BL/6 mice, and establish T. gondii as a valuable tool for deciphering CD1d-dependent protective mechanisms.
Assuntos
Antígenos CD1/genética , Predisposição Genética para Doença/genética , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia , Doença Aguda , Administração Oral , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Antígenos CD1/biossíntese , Antígenos CD1/fisiologia , Antígenos CD1d , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/imunologia , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Imunidade Inata/genética , Enteropatias Parasitárias/genética , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/genética , Toxoplasmose Animal/terapiaRESUMO
Bacterial infections are major causes of human mortality. The activation of coagulation pathways leading to the deposition of insoluble fibrin frequently accompanies bacterial infection, and much attention has focused upon the pathological attributes of infection-stimulated fibrin deposition. Nevertheless, here we present conclusive evidence that infection-stimulated fibrin deposition can perform critical protective functions during bacterial infection. Specifically, we demonstrate that coagulation-impaired fibrin(ogen)-deficient mice, in comparison with genetically matched control mice, display increased mortality upon peritoneal infection with the gram-positive facultative intracellular bacterium Listeria monocytogenes. To distinguish effects of fibrinogen from those of fibrin, we treat wild-type mice with warfarin, an anticoagulant that suppresses fibrin formation without impacting fibrinogen levels. Warfarin treatment exacerbates listeriosis, suggesting that fibrin is the key mediator of protection. With regard to the underlying protective mechanisms, we demonstrate that fibrin(ogen) suppresses anemia, reduces hemorrhagic pathology, and limits bacterial growth during listeriosis. Despite confirming a prior report that fibrin(ogen) promotes the peritoneal clearance of the extracellular bacterium Staphylococcal aureus, we demonstrate that fibrin(ogen) plays little role in controlling peritoneal numbers of L. monocytogenes bacteria or the dissemination of L. monocytogenes bacteria from the peritoneal cavity. Rather, fibrin(ogen) primarily limits the growth of these intracellular bacteria within hepatic tissue. While the pathological potential of excessive infection-stimulated fibrin deposition is well appreciated, our findings reveal that fibrin can function protectively, via multiple mechanisms, during bacterial infection.
Assuntos
Fibrina/fisiologia , Hemorragia/prevenção & controle , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/sangue , Fígado/microbiologia , Animais , Interferon gama/genética , Listeriose/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , RNA Mensageiro/análise , Fator de Necrose Tumoral alfa/genéticaRESUMO
Resistance to infection with Toxoplasma gondii was studied in mice lacking CD4 expression. Such mice developed more brain cysts and survived for a shorter time than did wild-type controls after peroral infection with ME49 cysts. After immunization with the ts-4 strain of T. gondii, CD4-deficient mice exhibited impaired resistance to a challenge infection with virulent RH tachyzoites. Thus, deficient CD4 expression increases the susceptibility of mice to a primary peroral T. gondii infection with cysts and impairs their ability to be successfully vaccinated. CD8(+) T cells from blood or spleens of Toxoplasma-infected, CD4-deficient mice expressed markers of activation at frequencies similar to those of infected wild-type mice. Production of IFN-gamma in vitro was moderately depressed, and levels of Toxoplasma-specific immunoglobulin G2a in serum were substantially lower than in wild-type mice. Administration of Toxoplasma-immune serum to ts-4-vaccinated CD4-deficient mice significantly improved their resistance to RH challenge. Also, the survival of CD4-deficient mice chronically infected with ME49 was significantly prolonged by administration of immune serum. These results demonstrate that in addition to CD8(+) T cells and IFN-gamma, which are known to be critical for resistance, CD4(+) cells also contribute significantly to protection against chronic T. gondii infections and against challenge infections with highly virulent tachyzoites in immunized mice via their role as helper cells for production of isotype-switched antibodies.