Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nano Lett ; 24(1): 89-96, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939013

RESUMO

The ability to target specific tissues and to be internalized by cells is critical for successful nanoparticle-based targeted drug delivery. Here, we combined "stealthy" rod-shaped poly(2-oxazoline) (POx) nanoparticles of different lengths with a cancer marker targeting nanobody and a fluorescent cell internalization sensor via a heat-induced living crystallization-driven self-assembly (CDSA) strategy. A significant increase in association and uptake driven by nanobody-receptor interactions was observed alongside nanorod-length-dependent kinetics. Importantly, the incorporation of the internalization sensor allowed for quantitative differentiation between cell surface association and internalization of the targeted nanorods, revealing unprecedented length-dependent cellular interactions of CDSA nanorods. This study highlights the modularity and versatility of the heat-induced CDSA process and further demonstrates the potential of POx nanorods as a modular nanomedicine platform.


Assuntos
Nanopartículas , Nanotubos , Sistemas de Liberação de Medicamentos , Membrana Celular
2.
Glia ; 72(8): 1392-1401, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572807

RESUMO

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS. However, it has remained unclear which TAM receptor is responsible for transducing this effect and whether post-translational modification of GAS6 is required. In this study, we show that the promotion of myelination requires post-translational modification of the GLA domain of GAS6 via vitamin K-dependent γ-carboxylation. We also confirmed that the intracerebroventricular provision of GAS6 for 2 weeks to demyelinated wild-type (WT) mice challenged with cuprizone increased the density of myelinated axons in the corpus callosum by over 2-fold compared with vehicle control. Conversely, the provision of GAS6 to Tyro3 KO mice did not significantly improve the density of myelinated axons. The improvement in remyelination following the provision of GAS6 to WT mice was also accompanied by an increased density of CC1+ve mature oligodendrocytes compared with vehicle control, whereas this improvement was not observed in the absence of Tyro3. This effect occurs independent of any influence on microglial activation. This work therefore establishes that the remyelinative activity of GAS6 is dependent on Tyro3 and includes potentiation of oligodendrocyte numbers.


Assuntos
Cuprizona , Doenças Desmielinizantes , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Proteína Tirosina Quinases , Remielinização , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Cuprizona/toxicidade , Camundongos , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Masculino , Feminino
3.
Biomacromolecules ; 24(11): 4958-4969, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37709729

RESUMO

Polymer nanoparticles have generated significant interest as delivery systems for therapeutic cargo. Self-immolative polymers (SIPs) are an interesting category of materials for delivery applications, as the characteristic property of end-to-end depolymerization allows for the disintegration of the delivery system, facilitating a more effective release of the cargo and clearance from the body after use. In this work, nanoparticles based on a pH-responsive polymer poly(ethylene glycol)-b-(2-diisopropyl)amino ethyl methacrylate) and a self-immolative polymer poly[N,N-(diisopropylamino)ethyl glyoxylamide-r-N,N-(dibutylamino)ethyl glyoxylamide] (P(DPAEGAm-r-DBAEGAm)) were developed. Four particles were synthesized based on P(DPAEGAm-r-DBAEGAm) polymers with varied diisopropylamino to dibutylamino ratios of 4:1, 2:1, 2:3, and 0:1, termed 4:1, 2:1, 2:3, and 0:1 PGAm particles. The pH of particle disassembly was tuned from pH 7.0 to pH 5.0 by adjusting the ratio of diisopropylamino to dibutylamino substituents on the pendant tertiary amine. The P(DPAEGAm-r-DBAEGAm) polymers were observed to depolymerize (60-80%) below the particle disassembly pH after ∼2 h, compared to <10% at pH 7.4 and maintained reasonable stability at pH 7.4 (20-50% depolymerization) after 1 week. While all particles exhibited the ability to load a peptide cargo, only the 4:1 PGAm particles had higher endosomal escape efficiency (∼4%) compared to the 2:3 or 0:1 PGAm particles (<1%). The 4:1 PGAm particle is a promising candidate for further optimization as an intracellular drug delivery system with rapid and precisely controlled degradation.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
4.
Curr Opin Colloid Interface Sci ; 55: 101468, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34093062

RESUMO

Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.

5.
Traffic ; 19(2): 105-110, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29159991

RESUMO

Visualization of scientific data is crucial not only for scientific discovery but also to communicate science and medicine to both experts and a general audience. Until recently, we have been limited to visualizing the three-dimensional (3D) world of biology in 2 dimensions. Renderings of 3D cells are still traditionally displayed using two-dimensional (2D) media, such as on a computer screen or paper. However, the advent of consumer grade virtual reality (VR) headsets such as Oculus Rift and HTC Vive means it is now possible to visualize and interact with scientific data in a 3D virtual world. In addition, new microscopic methods provide an unprecedented opportunity to obtain new 3D data sets. In this perspective article, we highlight how we have used cutting edge imaging techniques to build a 3D virtual model of a cell from serial block-face scanning electron microscope (SBEM) imaging data. This model allows scientists, students and members of the public to explore and interact with a "real" cell. Early testing of this immersive environment indicates a significant improvement in students' understanding of cellular processes and points to a new future of learning and public engagement. In addition, we speculate that VR can become a new tool for researchers studying cellular architecture and processes by populating VR models with molecular data.


Assuntos
Células/ultraestrutura , Compreensão/fisiologia , Software , Análise e Desempenho de Tarefas , Realidade Virtual , Humanos , Imageamento Tridimensional , Interface Usuário-Computador
6.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G725-G735, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068443

RESUMO

Recently, peripheral lymphatic vessels were found to transport high-density lipoprotein (HDL) from interstitial tissues to the blood circulation during reverse cholesterol transport. This function is thought to be critical to the clearance of cholesterol from atherosclerotic plaques. The role of organ-specific lymphatics in modulating HDL transport and composition is, however, incompletely understood. This study aimed to 1) determine the contribution of the lymphatics draining the intestine and liver (which are major sites of HDL synthesis) to total (thoracic) lymph HDL transport and 2) verify whether the HDLs in lymph are derived from specific organs and are modified during trafficking in lymph. The mesenteric, hepatic, or thoracic lymph duct was cannulated in nonfasted Sprague-Dawley rats, and lymph was collected over 5 h under anesthesia. Whole lymph and specific lymph lipoproteins (isolated by ultracentrifugation) were analyzed for protein and lipid composition. The majority of thoracic lymph fluid, protein, and lipid mass was sourced from the mesenteric, and to a lesser extent, hepatic lymph. Mesenteric and thoracic lymph were both rich in chylomicrons and very low-density lipoprotein, whereas hepatic lymph and plasma were HDL-rich. The protein and lipid mass in thoracic lymph HDL was mostly sourced from mesenteric lymph, whereas the cholesterol mass was equally sourced from mesenteric and hepatic lymph. HDLs were compositionally distinct across the lymph sources and plasma. The composition of HDL also appeared to be modified during passage from the mesenteric and hepatic to the thoracic lymph duct. Overall, this study demonstrates that the lipoproteins in lymph are organ specific in composition, and the intestine and liver appear to be the main source of HDL in the lymph.NEW & NOTEWORTHY High-density lipoprotein in lymph are organ-specific in composition and derive mostly from the intestine and liver. High-density lipoprotein also appears to be remodeled during transport through the lymphatics. These findings have implications to cardiometabolic diseases that involve perturbations in lipoprotein distribution and metabolism.


Assuntos
HDL-Colesterol/química , HDL-Colesterol/metabolismo , Sistema Linfático/anatomia & histologia , Sistema Linfático/fisiologia , Animais , Transporte Biológico , Feminino , Lipídeos/química , Fígado , Linfa/química , Mesentério , Proteínas/química , Ratos , Ratos Sprague-Dawley , Tórax
7.
Mol Pharm ; 17(8): 2938-2951, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32543863

RESUMO

Interstitial administration (e.g., subcutaneous (SC) administration) of immunotherapies and vaccines within nanoparticles can improve access to lymph-resident immune cells, leading to enhanced efficacy and reduced off-target effects. Recently, endogenous high-density lipoproteins (HDLs) were found to return from peripheral tissue back to the systemic circulation via the lymphatic vessels and nodes. This suggests the potential utility of HDLs as biocompatible lymphatic-targeted therapeutic carriers. However, we have a limited understanding of the mechanisms that drive HDL uptake into peripheral lymphatics from the interstitium. This study investigated the influence of HDL physicochemical properties on lymphatic transport and lymph node (LN) retention of HDL after SC administration. A range of HDL particles was prepared and characterized. Sphere-shaped endogenous HDLs were isolated from biological fluids (rat lymph, rat plasma, and human plasma) and separated into two subclasses based on the density. Discoidal-shaped synthetic (reconstituted) HDLs (rHDLs) of similar sizes were assembled from lipids and apolipoprotein A-I. All HDLs had similar sizes of 10-20 nm and a slightly negative surface charge. All HDLs were radiolabeled with 3H-cholesteryl ester (3H-CE) and/or 14C-free cholesterol (14C FC) and administered SC into the hind leg of thoracic lymph-cannulated rats. The recovery of radiolabels in lymph, plasma, LN, and tissues was determined. From the interstitial injection site, all HDLs were preferentially transported into the lymph and not blood vessels as indicated by high lymph-to-plasma concentration ratios of the radiolabels (up to 100:1 during the absorption phase) and greater radiolabel recovery in LNs draining the injection site compared to the contralateral side. Several HDLs with unique composition demonstrated significantly higher lymphatic transport compared to other HDLs despite possessing similar physical properties, suggesting that HDL lymphatic transport is less influenced by physical properties. The LN retention of HDL was positively correlated to increasing the negative charge of HDL, which was related to surface composition. Overall, this study informs the optimal design of HDL-based nanoparticles to promote lymphatic targeting of immunotherapies and vaccines.


Assuntos
Transporte Biológico/fisiologia , Lipoproteínas HDL/metabolismo , Vasos Linfáticos/metabolismo , Adolescente , Adulto , Idoso , Animais , Colesterol/metabolismo , Feminino , Humanos , Lipídeos , Linfa/metabolismo , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Nanopartículas/metabolismo , Ratos , Ratos Sprague-Dawley , Adulto Jovem
8.
Nano Lett ; 19(3): 1827-1831, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773887

RESUMO

Protein-conjugated nanoparticles have the potential to precisely deliver therapeutics to target sites in the body by specifically binding to cell surface receptors. To maximize targeting efficiency, the three-dimensional presentation of ligands toward these receptors is crucial. Herein, we demonstrate significantly enhanced targeting of nanoparticles to cancer cells by controlling the protein orientation on the nanoparticle surface. To engineer the point of attachment, we used amber codon reassignment to incorporate a synthetic amino acid, p-azidophenylalanine (azPhe), at specific locations within a single domain antibody (sdAb or nanobody) that recognizes the human epidermal growth factor receptor (EGFR). The azPhe modified sdAb can be tethered to the nanoparticle in a specific orientation using a bioorthogonal click reaction with a strained cyclooctyne. The crystal structure of the sdAb bound to EGFR was used to rationally select sites likely to optimally display the sdAb upon conjugation to a fluorescent nanocrystal (Qdot). Qdots with sdAb attached at the azPhe13 position showed 6 times greater binding affinity to EGFR expressing A549 cells, compared to Qdots with conventionally (succinimidyl ester) conjugated sdAb. As ligand-targeted delivery systems move toward clinical application, this work shows that nanoparticle targeting can be optimized by engineering the site of protein conjugation.


Assuntos
Imunoconjugados/química , Nanopartículas/química , Anticorpos de Domínio Único/química , Células A549 , Azidas/química , Química Click , Cristalografia por Raios X , Ciclo-Octanos/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/imunologia , Humanos , Imunoconjugados/imunologia , Ligantes , Fenilalanina/análogos & derivados , Fenilalanina/química , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Anticorpos de Domínio Único/imunologia
9.
Traffic ; 18(4): 242-249, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28019081

RESUMO

The internalization of proteins plays a key role in cell development, cell signaling and immunity. We have previously developed a specific hybridization internalization probe (SHIP) to quantitate the internalization of proteins and particles into cells. Herein, we extend the utility of SHIP to examine both the endocytosis and recycling of surface receptors using flow cytometry. SHIP was used to monitor endocytosis of membrane-bound transferrin receptor (TFR) and its soluble ligand transferrin (TF). SHIP enabled measurements of the proportion of surface molecules internalized, the internalization kinetics and the proportion and rate of internalized molecules that recycle to the cell surface with time. Using this method, we have demonstrated the internalization and recycling of holo-TF and an antibody against the TFR behave differently. This assay therefore highlights the implications of receptor internalization and recycling, where the internalization of the receptor-antibody complex behaves differently to the receptor-ligand complex. In addition, we observe distinct internalization patterns for these molecules expressed by different subpopulations of primary cells. SHIP provides a convenient and high throughput technique for analysis of trafficking parameters for both cell surface receptors and their ligands.


Assuntos
DNA/metabolismo , Endocitose/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Citometria de Fluxo/métodos , Humanos , Cinética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina/metabolismo , Transdução de Sinais/fisiologia , Transferrina/metabolismo
10.
Bioconjug Chem ; 30(2): 263-272, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30452233

RESUMO

Many emerging therapies rely on the delivery of biological cargo into the cytosol. Nanoparticle delivery systems hold great potential to deliver these therapeutics but are hindered by entrapment and subsequent degradation in acidic compartments of the endo/lysosomal pathway. Engineering polymeric delivery systems that are able to escape the endosome has significant potential to address this issue. However, the development of safe and effective delivery systems that can reliably deliver cargo to the cytosol is still a challenge. Greater understanding of the properties that govern endosomal escape and how it can be quantified is important for the development of more efficient nanoparticle delivery systems. This Topical Review highlights the current understanding of the mechanisms by which nanoparticles escape the endosome, and the emerging techniques to improve the quantification of endosomal escape.


Assuntos
Portadores de Fármacos/metabolismo , Endossomos/metabolismo , Nanopartículas/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fusão de Membrana , Pressão Osmótica , Preparações Farmacêuticas/administração & dosagem
11.
Macromol Rapid Commun ; 40(10): e1800917, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30835923

RESUMO

Stimuli-responsive nanoparticles have the potential to improve the delivery of therapeutics to a specific cell or region within the body. There are many stimuli that have shown potential for specific release of cargo, including variation of pH, redox potential, or the presence of enzymes. pH variation has generated significant interest for the synthesis of stimuli-responsive nanoparticles because nanoparticles are internalized into cells via vesicles that are acidified. Additionally, the tumor microenvironment is known to have a lower pH than the surrounding tissue. In this review, different strategies to design pH-responsive nanoparticles are discussed, focusing on the use of charge-shifting polymers, acid labile linkages, and crosslinking.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Nanopartículas/química , Polímeros/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/uso terapêutico , Polímeros/uso terapêutico
12.
Chem Soc Rev ; 47(20): 7818, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30285018

RESUMO

Correction for 'Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications' by Georgina K. Such et al., Chem. Soc. Rev., 2011, 40, 19-29.

13.
Small ; 14(34): e1801702, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30043521

RESUMO

The size and surface chemistry of nanoparticles dictate their interactions with biological systems. However, it remains unclear how these key physicochemical properties affect the cellular association of nanoparticles under dynamic flow conditions encountered in human vascular networks. Here, the facile synthesis of novel fluorescent nanoparticles with tunable sizes and surface chemistries and their association with primary human umbilical vein endothelial cells (HUVECs) is reported. First, a one-pot polymerization-induced self-assembly (PISA) methodology is developed to covalently incorporate a commercially available fluorescent dye into the nanoparticle core and tune nanoparticle size and surface chemistry. To characterize cellular association under flow, HUVECs are cultured onto the surface of a synthetic microvascular network embedded in a microfluidic device (SynVivo, INC). Interestingly, increasing the size of carboxylic acid-functionalized nanoparticles leads to higher cellular association under static conditions but lower cellular association under flow conditions, whereas increasing the size of tertiary amine-decorated nanoparticles results in a higher level of cellular association, under both static and flow conditions. These findings provide new insights into the interactions between polymeric nanomaterials and endothelial cells. Altogether, this work establishes innovative methods for the facile synthesis and biological characterization of polymeric nanomaterials for various potential applications.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Nanopartículas/química , Tamanho da Partícula , Polimerização , Reologia , Ácidos Carboxílicos/química , Corantes Fluorescentes/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Microfluídica , Microvasos/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Propriedades de Superfície , Testes de Toxicidade
14.
J Immunol ; 194(6): 2696-705, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25653426

RESUMO

Ab-targeted vaccination involves targeting a receptor of choice expressed by dendritic cells (DCs) with Ag-coupled Abs. Currently, there is little consensus as to which criteria determine receptor selection to ensure superior Ag presentation and immunity. In this study, we investigated parameters of DC receptor internalization and determined how they impact Ag presentation outcomes. First, using mixed bone marrow chimeras, we established that Ag-targeted, but not nontargeted, DCs are responsible for Ag presentation in settings of Ab-targeted vaccination in vivo. Next, we analyzed parameters of DEC205 (CD205), Clec9A, CD11c, CD11b, and CD40 endocytosis and obtained quantitative measurements of internalization speed, surface turnover, and delivered Ag load. Exploiting these parameters in MHC class I (MHC I) and MHC class II (MHC II) Ag presentation assays, we showed that receptor expression level, proportion of surface turnover, or speed of receptor internalization did not impact MHC I or MHC II Ag presentation efficiency. Furthermore, the Ag load delivered to DCs did not correlate with the efficiency of MHC I or MHC II Ag presentation. In contrast, targeting Ag to CD8(+) or CD8(-) DCs enhanced MHC I or MHC II Ag presentation, respectively. Therefore, receptor expression levels, speed of internalization, and/or the amount of Ag delivered can be excluded as major determinants that dictate Ag presentation efficiency in setting of Ab-targeted vaccination.


Assuntos
Anticorpos/imunologia , Antígenos CD/imunologia , Células Dendríticas/imunologia , Endocitose/imunologia , Vacinas/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/metabolismo , Antígeno CD11b/imunologia , Antígeno CD11c/imunologia , Antígenos CD40/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Lectinas Tipo C/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/imunologia , Vacinação/métodos , Vacinas/administração & dosagem
15.
Pharm Res ; 33(10): 2421-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27380189

RESUMO

PURPOSE: The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. METHODS: Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. RESULTS: Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. CONCLUSION: SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.


Assuntos
Endocitose/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Nanopartículas/análise , Nanopartículas/metabolismo , Células 3T3 , Animais , Camundongos
16.
J Am Chem Soc ; 137(12): 4215-22, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25794267

RESUMO

The entropy-driven affinity of trivalent (in)organic arsenicals for closely spaced dithiols has been exploited to develop a novel route to peptide/protein-polymer conjugation. A trivalent arsenous acid (As(III)) derivative (1) obtained from p-arsanilic acid (As(V)) was shown to readily undergo conjugation to the therapeutic peptide salmon calcitonin (sCT) via bridging of the Cys(1)-Cys(7) disulfide, which was verified by RP-HPLC and MALDI-ToF-MS. Conjugation was shown to proceed rapidly (t < 2 min) in situ and stoichiometrically through sequential reduction-conjugation protocols, therefore exhibiting conjugation efficiencies equivalent to those reported for the current leading disulfide-bond targeting strategies. Furthermore, using bovine serum albumin as a model protein, the trivalent organic arsenical 1 was found to demonstrate enhanced specificity for disulfide-bond bridging in the presence of free cysteine residues relative to established maleimide functional reagents. This specificity represents a shift toward potential orthogonality, by clearly distinguishing between the reactivity of mono- and disulfide-derived (vicinal or neighbors-through-space) dithiols. Finally, p-arsanilic acid was transformed into an initiator for aqueous single electron-transfer living radical polymerization, allowing the synthesis of hydrophilic arsenic-functional polymers which were shown to exhibit negligible cytotoxicity relative to a small molecule organic arsenical, and an unfunctionalized polymer control. Poly(poly[ethylene glycol] methyl ether acrylate) (PPEGA480, DPn = 10, Mn,NMR = 4900 g·mol(-1), D = 1.07) possessing a pentavalent arsenic acid (As(V)) α-chain end was transformed into trivalent As(III) post-polymerization via initial reduction by biological reducing agent glutathione (GSH), followed by binding of GSH. Conjugation of the resulting As(III)-functional polymer to sCT was realized within 35 min as indicated by RP-HPLC and verified later by thermodynamically driven release of sCT, from the conjugate, in the presence of strong chelating reagent ethanedithiol.


Assuntos
Arsenicais/química , Calcitonina/química , Cisteína/química , Acrilatos/química , Animais , Arsenicais/síntese química , Arsenitos/síntese química , Arsenitos/química , Linhagem Celular , Camundongos , Modelos Moleculares , Polietilenoglicóis/química , Polimerização , Salmão , Compostos de Sulfidrila/química
17.
Soft Matter ; 11(15): 2993-3002, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25731820

RESUMO

This study reports a novel nanoparticle system with simple and modular one-step assembly, which can respond intelligently to biologically relevant variations in pH. Importantly, these particles also show the ability to induce escape from the endosomal/lysosomal compartments of the cell, which is integral to the design of efficient polymeric delivery systems. The nanoparticles were formed by the nanoprecipitation of pH-responsive poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(2-(diethylamino)ethyl methacrylate)-b-poly(ethylene glycol) (PDEAEMA-b-PEG). Rhodamine B octadecyl ester perchlorate was successfully encapsulated within the hydrophobic core of the nanoparticle upon nanoprecipitation into PBS at pH 8. These particles disassembled when the pH was reduced below 6.8 at 37 °C. Cellular experiments showed the successful uptake of the nanoparticles into the endosomal/lysosomal compartments of 3T3 fibroblast cells. The ability to induce escape from the endosomes was demonstrated by the use of calcein, a membrane-impermeable fluorophore. The modular nature of these particles combined with promising endosomal escape capabilities make these dual component PDEAEMA nanoparticles useful for drug and gene delivery applications.


Assuntos
Portadores de Fármacos , Metacrilatos , Nanopartículas , Nylons , Polietilenoglicóis , Células 3T3 , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Endossomos/metabolismo , Ésteres , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Metacrilatos/administração & dosagem , Metacrilatos/química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Nylons/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Rodaminas/administração & dosagem , Rodaminas/química
18.
Immunol Cell Biol ; 92(8): 679-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913323

RESUMO

Antibody-dependent phagocytosis (ADP) is a potentially important immune mechanism to clear HIV. How HIV-specific ADP responses mature during HIV infection or in response to vaccinations administered, including the partially successful RV144 HIV vaccine, is not known. We established a modified ADP assay to measure internalisation of HIV antibody (Ab)-opsonised targets using a specific hybridisation internalisation probe. Labelled beads were coated with both biotinylated HIV gp140 envelope protein and a fluorescent internalisation probe, opsonised with Abs and incubated with a monocytic cell line. The fluorescence derived from the fluorescent internalisation probe on surface-bound beads, but not from internalised beads, was quenched by the addition of a complementary quencher probe. HIV Env-specific ADP was measured in 31 subjects during primary infection and early chronic HIV infection. Although ADP responses were present early during HIV infection, a significant increase in ADP responses in all 31 subjects studied was detected (P<0.001). However, when we tested 30 HIV-negative human subjects immunised with the Canarypox/gp120 vaccine regimen (subjects from the RV144 trial) we did not detect HIV-specific ADP activity. In conclusion, a modified assay was developed to measure HIV-specific ADP. Enhanced ADP responses early in the course of HIV infection were observed but no ADP activity was detected following the vaccinations administered in the RV144 trial. Improved vaccine regimens may be needed to capitalise on ADP-mediated immunity against HIV.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fagocitose/imunologia , Vacinas contra a AIDS/imunologia , Especificidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Anticorpos Anti-HIV/sangue , Infecções por HIV/virologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Fatores de Tempo , Carga Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
19.
Small ; 10(14): 2902-9, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24664540

RESUMO

The design and assembly of DNA multilayer films with programmable degradation properties are reported. The nanostructured DNA films are assembled through the layer-by-layer (LbL) assembly technique and can be programmed to degrade by subsequently introducing DNA strands of specific sequences. The strands preferentially hybridize to the building blocks that stabilize the film structure, causing the film to rearrange and degrade. The rate of degradation is influenced by both the availability and accessibility of the complementary DNA binding sites within the film, as well as the degree of crosslinking within the film. Similar results are obtained for DNA multilayer films assembled on planar and particle supports. This approach offers an avenue to tailor degradability features into DNA-based materials that may find application in the biosciences, in areas such as biosensing and drug delivery.


Assuntos
DNA/química , Sequência de Bases , Técnicas Biossensoriais , DNA/genética , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia , Hibridização de Ácido Nucleico , Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício
20.
Small ; 10(20): 4080-6, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25044500

RESUMO

The engineering of layer-by-layer (LbL) hybrid click capsules that are responsive to biological stimuli is reported. The capsules comprise a pH-sheddable, non cross-linked outer coating that protects enzyme-cleavable inner layers. Upon cellular uptake, the outer coating is released and the capsules are enzymatically degraded. In vitro cell degradation results in rapid capsule degradation (10 min) upon cellular internalization.


Assuntos
Cápsulas , Enzimas/metabolismo , Concentração de Íons de Hidrogênio , Química Click , Microscopia Eletrônica de Transmissão , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA