Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 371-380, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871149

RESUMO

Microbial natural products represent a rich resource of evolved chemistry that forms the basis for the majority of pharmacotherapeutics. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a particularly interesting class of natural products noted for their unique mode of biosynthesis and biological activities. Analyses of sequenced microbial genomes have revealed an enormous number of biosynthetic loci encoding RiPPs but whose products remain cryptic. In parallel, analyses of bacterial metabolomes typically assign chemical structures to only a minority of detected metabolites. Aligning these 2 disparate sources of data could provide a comprehensive strategy for natural product discovery. Here we present DeepRiPP, an integrated genomic and metabolomic platform that employs machine learning to automate the selective discovery and isolation of novel RiPPs. DeepRiPP includes 3 modules. The first, NLPPrecursor, identifies RiPPs independent of genomic context and neighboring biosynthetic genes. The second module, BARLEY, prioritizes loci that encode novel compounds, while the third, CLAMS, automates the isolation of their corresponding products from complex bacterial extracts. DeepRiPP pinpoints target metabolites using large-scale comparative metabolomics analysis across a database of 10,498 extracts generated from 463 strains. We apply the DeepRiPP platform to expand the landscape of novel RiPPs encoded within sequenced genomes and to discover 3 novel RiPPs, whose structures are exactly as predicted by our platform. By building on advances in machine learning technologies, DeepRiPP integrates genomic and metabolomic data to guide the isolation of novel RiPPs in an automated manner.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas/métodos , Peptídeos/isolamento & purificação , Software , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Produtos Biológicos/metabolismo , Genômica/métodos , Aprendizado de Máquina , Metabolômica/métodos , Biossíntese Peptídica/genética , Peptídeos/genética , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo
2.
Nucleic Acids Res ; 45(W1): W49-W54, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28460067

RESUMO

Microbial natural products represent a rich resource of pharmaceutically and industrially important compounds. Genome sequencing has revealed that the majority of natural products remain undiscovered, and computational methods to connect biosynthetic gene clusters to their corresponding natural products therefore have the potential to revitalize natural product discovery. Previously, we described PRediction Informatics for Secondary Metabolomes (PRISM), a combinatorial approach to chemical structure prediction for genetically encoded nonribosomal peptides and type I and II polyketides. Here, we present a ground-up rewrite of the PRISM structure prediction algorithm to derive prediction of natural products arising from non-modular biosynthetic paradigms. Within this new version, PRISM 3, natural product scaffolds are modeled as chemical graphs, permitting structure prediction for aminocoumarins, antimetabolites, bisindoles and phosphonate natural products, and building upon the addition of ribosomally synthesized and post-translationally modified peptides. Further, with the addition of cluster detection for 11 new cluster types, PRISM 3 expands to detect 22 distinct natural product cluster types. Other major modifications to PRISM include improved sequence input and ORF detection, user-friendliness and output. Distribution of PRISM 3 over a 300-core server grid improves the speed and capacity of the web application. PRISM 3 is available at http://magarveylab.ca/prism/.


Assuntos
Produtos Biológicos/química , Genoma Microbiano , Software , Algoritmos , Vias Biossintéticas/genética , Internet , Metaboloma/genética , Metabolismo Secundário/genética
3.
Proc Natl Acad Sci U S A ; 113(42): E6343-E6351, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698135

RESUMO

Microbial natural products are an evolved resource of bioactive small molecules, which form the foundation of many modern therapeutic regimes. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) represent a class of natural products which have attracted extensive interest for their diverse chemical structures and potent biological activities. Genome sequencing has revealed that the vast majority of genetically encoded natural products remain unknown. Many bioinformatic resources have therefore been developed to predict the chemical structures of natural products, particularly nonribosomal peptides and polyketides, from sequence data. However, the diversity and complexity of RiPPs have challenged systematic investigation of RiPP diversity, and consequently the vast majority of genetically encoded RiPPs remain chemical "dark matter." Here, we introduce an algorithm to catalog RiPP biosynthetic gene clusters and chart genetically encoded RiPP chemical space. A global analysis of 65,421 prokaryotic genomes revealed 30,261 RiPP clusters, encoding 2,231 unique products. We further leverage the structure predictions generated by our algorithm to facilitate the genome-guided discovery of a molecule from a rare family of RiPPs. Our results provide the systematic investigation of RiPP genetic and chemical space, revealing the widespread distribution of RiPP biosynthesis throughout the prokaryotic tree of life, and provide a platform for the targeted discovery of RiPPs based on genome sequencing.


Assuntos
Produtos Biológicos , Biologia Computacional/métodos , Genômica , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Algoritmos , Análise por Conglomerados , Genômica/métodos , Cadeias de Markov , Peptídeos/genética , Peptídeos/metabolismo , Células Procarióticas/fisiologia , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes
4.
BMC Genomics ; 19(1): 45, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334896

RESUMO

BACKGROUND: Among naturally occurring small molecules, tRNA-derived cyclodipeptides are a class that have attracted attention for their diverse and desirable biological activities. However, no tools are available to link cyclodipeptide synthases identified within prokaryotic genome sequences to their chemical products. Consequently, it is unclear how many genetically encoded cyclodipeptides represent novel products, and which producing organisms should be targeted for discovery. RESULTS: We developed a pipeline for identification and classification of cyclodipeptide biosynthetic gene clusters and prediction of aminoacyl-tRNA substrates and complete chemical structures. We leveraged this tool to conduct a global analysis of tRNA-derived cyclodipeptide biosynthesis in 93,107 prokaryotic genomes, and compared predicted cyclodipeptides to known cyclodipeptide synthase products and all known chemically characterized cyclodipeptides. By integrating predicted chemical structures and gene cluster architectures, we created a unified map of known and unknown genetically encoded cyclodipeptides. CONCLUSIONS: Our analysis suggests that sizeable regions of the chemical space encoded within sequenced prokaryotic genomes remain unexplored. Our map of the landscape of genetically encoded cyclodipeptides provides candidates for targeted discovery of novel compounds. The integration of our pipeline into a user-friendly web application provides a resource for further discovery of cyclodipeptides in newly sequenced prokaryotic genomes.


Assuntos
Bactérias/genética , Dipeptídeos/biossíntese , Peptídeos Cíclicos/biossíntese , RNA de Transferência/metabolismo , Algoritmos , Genômica , Fases de Leitura Aberta
5.
Nat Chem Biol ; 12(12): 1007-1014, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694801

RESUMO

Polyketides (PKs) and nonribosomal peptides (NRPs) are profoundly important natural products, forming the foundations of many therapeutic regimes. Decades of research have revealed over 11,000 PK and NRP structures, and genome sequencing is uncovering new PK and NRP gene clusters at an unprecedented rate. However, only ∼10% of PK and NRPs are currently associated with gene clusters, and it is unclear how many of these orphan gene clusters encode previously isolated molecules. Therefore, to efficiently guide the discovery of new molecules, we must first systematically de-orphan emergent gene clusters from genomes. Here we provide to our knowledge the first comprehensive retro-biosynthetic program, generalized retro-biosynthetic assembly prediction engine (GRAPE), for PK and NRP families and introduce a computational pipeline, global alignment for natural products cheminformatics (GARLIC), to uncover how observed biosynthetic gene clusters relate to known molecules, leading to the identification of gene clusters that encode new molecules.


Assuntos
Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos/metabolismo , Policetídeos/metabolismo , Algoritmos , Família Multigênica/genética , Biossíntese de Peptídeos Independentes de Ácido Nucleico/genética , Peptídeos/química , Peptídeos/genética , Policetídeos/química
6.
Nat Chem Biol ; 12(4): 233-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829473

RESUMO

Antibiotics are essential for numerous medical procedures, including the treatment of bacterial infections, but their widespread use has led to the accumulation of resistance, prompting calls for the discovery of antibacterial agents with new targets. A majority of clinically approved antibacterial scaffolds are derived from microbial natural products, but these valuable molecules are not well annotated or organized, limiting the efficacy of modern informatic analyses. Here, we provide a comprehensive resource defining the targets, chemical origins and families of the natural antibacterial collective through a retrobiosynthetic algorithm. From this we also detail the directed mining of biosynthetic scaffolds and resistance determinants to reveal structures with a high likelihood of having previously unknown modes of action. Implementing this pipeline led to investigations of the telomycin family of natural products from Streptomyces canus, revealing that these bactericidal molecules possess a new antibacterial mode of action dependent on the bacterial phospholipid cardiolipin.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Cardiolipinas/biossíntese , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos/farmacologia , Streptomyces/metabolismo , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Vias Biossintéticas , Cardiolipinas/genética , Contagem de Colônia Microbiana , Bases de Dados Genéticas , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/metabolismo , Testes de Sensibilidade Microbiana , Família Multigênica , Peptídeos/genética , Peptídeos/isolamento & purificação , Navegador
7.
Gastroenterology ; 151(4): 670-83, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27373514

RESUMO

BACKGROUND & AIMS: Partially degraded gluten peptides from cereals trigger celiac disease (CD), an autoimmune enteropathy occurring in genetically susceptible persons. Susceptibility genes are necessary but not sufficient to induce CD, and additional environmental factors related to unfavorable alterations in the microbiota have been proposed. We investigated gluten metabolism by opportunistic pathogens and commensal duodenal bacteria and characterized the capacity of the produced peptides to activate gluten-specific T-cells from CD patients. METHODS: We colonized germ-free C57BL/6 mice with bacteria isolated from the small intestine of CD patients or healthy controls, selected for their in vitro gluten-degrading capacity. After gluten gavage, gliadin amount and proteolytic activities were measured in intestinal contents. Peptides produced by bacteria used in mouse colonizations from the immunogenic 33-mer gluten peptide were characterized by liquid chromatography tandem mass spectrometry and their immunogenic potential was evaluated using peripheral blood mononuclear cells from celiac patients after receiving a 3-day gluten challenge. RESULTS: Bacterial colonizations produced distinct gluten-degradation patterns in the mouse small intestine. Pseudomonas aeruginosa, an opportunistic pathogen from CD patients, exhibited elastase activity and produced peptides that better translocated the mouse intestinal barrier. P aeruginosa-modified gluten peptides activated gluten-specific T-cells from CD patients. In contrast, Lactobacillus spp. from the duodenum of non-CD controls degraded gluten peptides produced by human and P aeruginosa proteases, reducing their immunogenicity. CONCLUSIONS: Small intestinal bacteria exhibit distinct gluten metabolic patterns in vivo, increasing or reducing gluten peptide immunogenicity. This microbe-gluten-host interaction may modulate autoimmune risk in genetically susceptible persons and may underlie the reported association of dysbiosis and CD.


Assuntos
Doença Celíaca/imunologia , Doença Celíaca/microbiologia , Duodeno/microbiologia , Glutens/imunologia , Glutens/metabolismo , Fenômenos Imunogenéticos , Animais , Translocação Bacteriana , Estudos de Casos e Controles , Doença Celíaca/genética , Humanos , Lactobacillus/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/fisiologia , Linfócitos T/imunologia
8.
Nucleic Acids Res ; 43(20): 9645-62, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26442528

RESUMO

Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.


Assuntos
Produtos Biológicos/metabolismo , Genômica/métodos , Metaboloma/genética , Metabolômica/métodos , Metabolismo Secundário/genética , Algoritmos , Vias Biossintéticas/genética , Genoma Microbiano , Peptídeo Sintases/genética , Policetídeos/química
9.
Environ Sci Technol ; 50(7): 3589-96, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26900715

RESUMO

Ferrihydrite is a nanocrystalline Fe (hydr)oxide and important sink for environmental contaminants. Although Fe (hydr)oxides are rarely pure in natural systems, little is known about the effects of structural impurities such as Al on the surface properties and reactivity of ferrihydrite. In this study, we characterized the adsorption mechanisms of chromate, selenate, and sulfate on Al-substituted ferrihydrite (0, 6, 12, 18, and 24 mol % Al) using in situ attenuated total reflection Fourier transform infrared spectroscopy. Spectral data sets recorded as a function of pH were processed using a multivariate curve resolution technique to identify which types of surface species form and to generate their concentration profiles as a function of pH and Al content. Results show a significant increase in relative fraction of outer-sphere complexes for all three oxyanions with increasing Al substitution. In addition, the effect of Al substitution is found to be mechanism-specific in the case of chromate, with bidentate complexes disproportionately suppressed over monodentate complexes at higher Al contents. Overall, our findings have important implications for the fate of chromate, selenate, and sulfate in subsurface environments and offer new insight into the surface reactivity of Al-ferrihydrite.


Assuntos
Alumínio/química , Cromatos/isolamento & purificação , Compostos Férricos/química , Ácido Selênico/isolamento & purificação , Sulfatos/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Análise Multivariada , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
10.
J Ind Microbiol Biotechnol ; 43(2-3): 293-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26350080

RESUMO

Natural products are a crucial source of antimicrobial agents, but reliance on low-resolution bioactivity-guided approaches has led to diminishing interest in discovery programmes. Here, we demonstrate that two in-house automated informatic platforms can be used to target classes of biologically active natural products, specifically, peptaibols. We demonstrate that mass spectrometry-based informatic approaches can be used to detect natural products with high sensitivity, identifying desired agents present in complex microbial extracts. Using our specialised software packages, we could elaborate specific branches of chemical space, uncovering new variants of trichopolyn and demonstrating a way forward in mining natural products as a valuable source of potential pharmaceutical agents.


Assuntos
Produtos Biológicos/química , Descoberta de Drogas/métodos , Informática/métodos , Peptaibols/química , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos , Hypocrea/química , Espectrometria de Massas , Peptídeos/química
11.
Chembiochem ; 16(2): 223-7, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487354

RESUMO

Nonribosomal depsipeptides are a class of potent microbial natural products, which include several clinically approved pharmaceutical agents. Genome sequencing has revealed a large number of uninvestigated natural-product biosynthetic gene clusters. However, while novel informatic search methods to access these gene clusters have been developed to identify peptide natural products, depsipeptide detection has proven challenging. Herein, we present an improved version of our informatic search algorithm for natural products (iSNAP), which facilitates the detection of known and genetically predicted depsipeptides in complex microbial culture extracts. We validated this technology by identifying several depsipeptides from novel producers, and located a large number of novel depsipeptide gene clusters for future study. This approach highlights the value of chemoinformatic search methods for the discovery of genetically encoded metabolites by targeting specific areas of chemical space.


Assuntos
Algoritmos , Biologia Computacional/métodos , Depsipeptídeos , Streptomyces/genética , Streptomyces/metabolismo , Produtos Biológicos , Simulação por Computador , Depsipeptídeos/genética , Genoma Bacteriano , Cadeias de Markov , Família Multigênica , Espectrometria de Massas em Tandem , Valinomicina/metabolismo
12.
Nat Chem Biol ; 9(4): 241-3, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377039

RESUMO

Microorganisms produce and secrete secondary metabolites to assist in their survival. We report that the gold resident bacterium Delftia acidovorans produces a secondary metabolite that protects from soluble gold through the generation of solid gold forms. This finding is the first demonstration that a secreted metabolite can protect against toxic gold and cause gold biomineralization.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Coordenação/metabolismo , Delftia acidovorans/metabolismo , Ouro/metabolismo , Nanopartículas Metálicas/química , Peptídeos/metabolismo , Proteínas de Bactérias/genética , Complexos de Coordenação/química , Cupriavidus/genética , Cupriavidus/metabolismo , Delftia acidovorans/genética , Espectroscopia de Ressonância Magnética , Peptídeos/genética , Solubilidade
13.
Proc Natl Acad Sci U S A ; 109(47): 19196-201, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132949

RESUMO

Nonribosomal peptides are highly sought after for their therapeutic applications. As with other natural products, dereplication of known compounds and focused discovery of new agents within this class are central concerns of modern natural product-based drug discovery. Development of a chemoinformatic library-based and informatic search strategy for natural products (iSNAP) has been constructed and applied to nonribosomal peptides and proved useful for true nontargeted dereplication across a spectrum of nonribosomal peptides and within natural product extracts.


Assuntos
Algoritmos , Produtos Biológicos/análise , Biologia Computacional/métodos , Peptídeos/metabolismo , Bacillus/metabolismo , Bacitracina/química , Produtos Biológicos/química , Misturas Complexas , Bases de Dados de Compostos Químicos , Fermentação , Peptídeos/química , Reprodutibilidade dos Testes , Ribossomos , Espectrometria de Massas em Tandem
14.
Chembiochem ; 14(4): 431-5, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23401283

RESUMO

EXPANDING OUR KNOWLEDGE: Natural lipocyclocarbamate natural products have provided the inspiration for the first-in-class synthetic phospholipase inhibitor darapladib, currently in phase III clinical trials for the treatment of atherosclerosis. Here, we discuss their biosynthesis by a nonribosomal peptide synthetase.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , Produtos Biológicos/metabolismo , Carbamatos/metabolismo , Inibidores Enzimáticos/metabolismo , Peptídeo Sintases/metabolismo , Pseudomonas fluorescens/enzimologia , Aterosclerose/tratamento farmacológico , Benzaldeídos/química , Produtos Biológicos/química , Carbamatos/química , Inibidores Enzimáticos/química , Modelos Moleculares , Oximas/química , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo
15.
HCA Healthc J Med ; 4(2): 193-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424979

RESUMO

Background: Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a life-threatening, multi-organ adverse drug reaction with an incidence of 1 in 1000 to 1 in 10 000 high-risk drug exposures. Case Presentation: An elderly female presented to the hospital with progressive weakness and a diffuse erythematous macular rash covering most of her body that started 3 days prior. Over the next 3 days, the patient quickly deteriorated, developing disorientation with acute onset left-sided weakness, leukocytosis, thrombocytopenia, eosinophilia, liver and kidney failure, and hypoxia. Clinical and histological changes supported the diagnosis of DRESS syndrome caused by intravenous (IV) ampicillin administered during a prior hospitalization for a urinary tract infection. Systemic corticosteroids were initiated quickly thereafter, but the patient ultimately succumbed to complications caused by DRESS syndrome. Conclusion: There are currently no randomized trials evaluating treatments for DRESS, and evidenced-based guidelines are lacking. Viral reactivation has also been suggested as a possible complication of DRESS syndrome, though the true incidence and association remain unclear. Although we started our patient on high-dose IV corticosteroids early in her course, she still succumbed to complications of DRESS syndrome. Further research into the treatment of DRESS syndrome and its association with viral reactivation is essential.

17.
Environ Sci Technol ; 46(11): 5851-8, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22578108

RESUMO

Chromate mobility, reactivity, and bioavailability in soil environments are affected by adsorption reactions on iron oxide minerals, but the adsorption mechanisms remain controversial. In this study, we employed in situ attenuated total reflectance Fourier transform infrared spectroscopy and theoretical frequency calculations to characterize chromate adsorption on 2-line ferrihydrite. The effects of pH, aqueous chromate concentration, ionic strength, and deuterium exchange were investigated. Results suggest the formation of monodentate and bidentate surface complexes. It was determined that monodentate complexes are dominant at low surface coverage and pH ≥ 6.5 and that bidentate complexes form at high surface coverage and pH < 6. Deuterium exchange experiments indicated that the inner-sphere complexes are not protonated. Difference spectra revealed that monodentate complexes are particularly susceptible to ionic strength effects under acidic conditions.


Assuntos
Cromatos/química , Compostos Férricos/química , Modelos Teóricos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adsorção , Meio Ambiente , Concentração de Íons de Hidrogênio , Concentração Osmolar , Vibração , Poluentes Químicos da Água/química
18.
Curr Opin Chem Biol ; 69: 102160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660248

RESUMO

Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia
19.
HCA Healthc J Med ; 2(4): 273-277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37424846

RESUMO

Description The following case study demonstrates a 26-year-old male that presented to the dermatology clinic with an enlarging, raised skin nodule located on the left inferior lateral lower back. The patient reported it had persisted for two years, and he had not received prior treatment. He noted a family history of nonmelanoma skin cancer but had no other dermatological issues in the past. Physical examination revealed a pink, firm and well-circumscribed subcutaneous mass with a prominent follicular pore. It was assumed the lesion was an epidermal inclusion cyst, and surgical excision was performed. Histopathology revealed lobules of epithelioid cells with indistinct cytoplasm in a fibromyxoid hyalinized matrix surrounded by lamellar bone and a collagenous pseudocapsule. Immunohistochemical staining showed moderate desmin immunoreactivity and negative immunoreactivity for CD34, S-100, EMA, actin and pancytokeratin. Based on the findings, a diagnosis of ossifying fibromyxoid tumor was made. Given the uncertain biological potential of this lesion, re-excision was performed. No residual tumor was identified on repeat pathological evaluation. The patient was scheduled for close follow-up to survey for recurrence or possible metastasis.

20.
HCA Healthc J Med ; 1(3): 155-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37424711

RESUMO

Introduction: Red Ear Syndrome (RES) is a condition often considered to be a localized form of erythromelalgia. It can be related to structural cervical defects or idiopathic. RES is generally very difficult to treat. Discussion: A 57-year-old male presented to the dermatology clinic complaining of a 4-month history of intermittent redness and severe burning of bilateral ears. On examination, the patient exhibited edematous erythema and tenderness to palpation affecting the right and left ear and right malar cheek. A skin biopsy revealed mild superficial perivascular lymphocytic infiltrate with hypertrophy of endothelial cells. The patient was found to have a normal lab work-up including complete blood count, metabolic panel, erythrocyte sedimentation rate, anti-nuclear antibody and type II collagen antibody. A diagnosis of Red Ear Syndrome was made. After failing multiple medications over several months, the patient was started on aspirin and paroxetine which was gradually titrated until he was completely asymptomatic. To date, there is only one other case presentation illustrating the effectiveness of this treatment regimen. Conclusion: There are a limited number of cases describing idiopathic RES with inconsistent results in treatment. With a relatively small number of cases reported, further research is needed into the pathophysiology of RES along with the dual therapy of aspirin and paroxetine in patients that suffer from both primary and secondary RES.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA