Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 306(1): G37-47, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24177029

RESUMO

It is known that chronic ethanol significantly impairs liver regeneration. However, the effect of acute ethanol exposure on liver regeneration remains largely unknown. To address this question, C57Bl6/J mice were exposed to acute ethanol (6 g/kg intragastrically) for 3 days, and partial hepatectomy (PHx) was performed 24 h after the last dose. Surprisingly, acute ethanol preexposure promoted liver regeneration. This effect of ethanol did not correlate with changes in expression of cell cycle regulatory genes (e.g., cyclin D1, p21, and p27) but did correlate with protection against the effect of PHx on indices of impaired lipid and carbohydrate metabolism. Ethanol preexposure protected against inhibition of the oxidant-sensitive mitochondrial enzyme, aconitase. The activity of aldehyde dehydrogenase 2 (ALDH2) was significantly increased by ethanol preexposure. The effect of ethanol was blocked by inhibiting (Daidzin) and was mimicked by activating (Alda-1) ALDH2. Lipid peroxides are also substrates for ALDH2; indeed, alcohol preexposure blunted the increase in lipid peroxidation (4OH-nonenal adducts) caused by PHx. Taken together, these data suggest that acute preoperative ethanol exposure "preconditions" the liver to respond more rapidly to regenerate after PHx by activating mitochondrial ALDH2, which prevents oxidative stress in this compartment.


Assuntos
Aldeído Desidrogenase/metabolismo , Etanol/farmacologia , Hepatectomia/métodos , Regeneração Hepática , Aconitato Hidratase/metabolismo , Aldeído-Desidrogenase Mitocondrial , Animais , Citoproteção , Regulação da Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Viruses ; 16(4)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675975

RESUMO

Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification. LCMV-ARM induces robust NF-κB and interferon response factor (IRF) activation while LCMV-WE seems to avoid early innate sensing and failed to induce strong NF-κB and IRF responses in dual-reporter monocyte and epithelial cells. Toll-like receptor 2 (TLR-2) signaling appears to play a critical role in NF-κB activation and the silencing of TLR-2 shuts down IL-6 production in ARM but not in WE-infected cells. Pathogenic LCMV-WE infection is poorly recognized in early endosomes and failed to induce TLR-2/Mal-dependent pro-inflammatory cytokines. Following infection, Interleukin-1 receptor-associated kinase 1 (IRAK-1) expression is diminished in LCMV-ARM- but not LCMV-WE-infected cells, which indicates it is likely involved in the LCMV-ARM NF-κB activation. By confocal microscopy, ARM and WE strains have similar intracellular trafficking although LCMV-ARM infection appears to coincide with greater co-localization of early endosome marker EEA1 with TLR-2. Both strains co-localize with Rab-7, a late endosome marker, but the interaction with LCMV-WE seems to be more prolonged. These findings suggest that LCMV-ARM's intracellular trafficking pathway may facilitate interaction with innate immune sensors, which promotes the induction of effective innate and adaptive immune responses.


Assuntos
Imunidade Inata , Vírus da Coriomeningite Linfocítica , Internalização do Vírus , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Humanos , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Endossomos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Linhagem Celular , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia
3.
J Pharmacol Exp Ther ; 347(1): 126-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926289

RESUMO

Olanzapine (OLZ), an effective treatment of schizophrenia and other disorders, causes weight gain and metabolic syndrome. Most studies to date have focused on the potential effects of OLZ on the central nervous system's mediation of weight; however, peripheral changes in liver or other key metabolic organs may also play a role in the systemic effects of OLZ. Thus, the purpose of this study was to investigate the effects of OLZ on hepatic metabolism in a mouse model of OLZ exposure. Female C57Bl/6J mice were administered OLZ (8 mg/kg per day) or vehicle subcutaneously by osmotic minipumps for 28 days. Liver and plasma were taken at sacrifice for biochemical analyses and for comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics analysis. OLZ increased body weight, fat pad mass, and liver-to-body weight ratio without commensurate increase in food consumption, indicating that OLZ altered energy expenditure. Expression and biochemical analyses indicated that OLZ induced anaerobic glycolysis and caused a pseudo-fasted state, which depleted hepatic glycogen reserves. OLZ caused similar effects in cultured HepG2 cells, as determined by Seahorse analysis. Metabolomic analysis indicated that OLZ increased hepatic concentrations of amino acids that can alter metabolism via the mTOR pathway; indeed, hepatic mTOR signaling was robustly increased by OLZ. Interestingly, OLZ concomitantly activated AMP-activated protein kinase (AMPK) signaling. Taken together, these data suggest that disturbances in glucose and lipid metabolism caused by OLZ in liver may be mediated, at least in part, via simultaneous activation of both catabolic (AMPK) and anabolic (mammalian target of rapamycin) pathways, which yields new insight into the metabolic side effects of this drug.


Assuntos
Antipsicóticos/metabolismo , Benzodiazepinas/metabolismo , Glicemia/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antipsicóticos/administração & dosagem , Benzodiazepinas/administração & dosagem , Glicemia/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Bombas de Infusão Implantáveis , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Olanzapina , Pressão Osmótica , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
4.
Vaccine ; 38(14): 2949-2959, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32111526

RESUMO

Junin (JUNV) and Machupo (MACV), two mammalian arenaviruses placed on the 2018 WHO watch list, are prevalent in South America causing Argentine and Bolivian hemorrhagic fevers (AHF and BHF), respectively. The live attenuated JUNV vaccine, Candid #1, significantly reduced the incidence of AHF. Vaccination induces neutralizing antibody (nAb) responses which effectively target GP1 (the viral attachment glycoprotein) pocket which accepts the tyrosine residue of the cellular receptor, human transferrin receptor 1 (TfR1). In spite of close genetic relationships between JUNV and MACV, variability in the GP1 receptor binding site (e.g., MACV GP1 loop 10) results in poor MACV neutralization by Candid #1-induced nAbs. Candid #1 is not recommended for vaccination of children younger than 15 years old (a growing "at risk" group), pregnant women, or other immunocompromised individuals. Candid #1's primary reliance on limited missense mutations for attenuation, genetic heterogeneity, and potential stability concerns complicate approval of this vaccine in the US. To address these issues, we applied alphavirus RNA replicon vector technology based on the human Venezuelan equine encephalitis vaccine (VEEV) TC-83 to generate replication restricted virus-like-particles vectors (VLPVs) simultaneously expressing cellular glycoprotein precursors (GPC) of both viruses, JUNV and MACV. Resulting JV&MV VLPVs were found safe and immunogenic in guinea pigs. Immunization with VLPVs induced humoral responses which correlated with complete protection against lethal disease after challenge with pathogenic strains of JUNV (Romero) and MACV (Carvallo).


Assuntos
Alphavirus , Febre Hemorrágica Americana , Replicon , Vacinas Virais/imunologia , Alphavirus/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Arenavirus do Novo Mundo , Cobaias , Febre Hemorrágica Americana/prevenção & controle , Imunidade Humoral , Vírus Junin , RNA , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas Virais/genética
5.
Vaccines (Basel) ; 8(1)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32121666

RESUMO

The safety and genetic stability of V4020, a novel Venezuelan Equine Encephalitis Virus (VEEV) vaccine based on the investigational VEEV TC-83 strain, was evaluated in mice. V4020 was generated from infectious DNA, contains a stabilizing mutation in the E2-120 glycoprotein, and includes rearrangement of structural genes. After intracranial inoculation (IC), replication of V4020 was more attenuated than TC-83, as documented by low clinical scores, inflammation, viral load in brain, and earlier viral clearance. During the first 9 days post-inoculation (DPI), genes involved in inflammation, cytokine signaling, adaptive immune responses, and apoptosis were upregulated in both groups. However, the magnitude of upregulation was greater in TC-83 than V4020 mice, and this pattern persisted till 13 DPI, while V4020 gene expression profiles declined to mock-infected levels. In addition, genetic markers of macrophages, DCs, and microglia were strongly upregulated in TC-83 mice. During five serial passages in the brain, less severe clinical manifestations and a lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. A higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved in neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model.

6.
Pathogens ; 8(1)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650607

RESUMO

Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host's immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements.

7.
Vaccine ; 37(25): 3317-3325, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31072736

RESUMO

Novel live-attenuated V4020 vaccine was prepared for Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The genome of V4020 virus was rearranged, with the capsid gene expressed using a duplicate subgenomic promoter downstream from the glycoprotein genes. V4020 also included both attenuating mutations from the TC83 VEEV vaccine secured by mutagenesis to prevent reversion mutations. The full-length infectious RNA of V4020 vaccine virus was expressed from pMG4020 plasmid downstream from the CMV promoter and launched replication of live-attenuated V4020 in vitro or in vivo. BALB/c mice vaccinated with a single dose of V4020 virus or with pMG4020 plasmid had no adverse reactions to vaccinations and developed high titers of neutralizing antibodies. After challenge with the wild type VEEV, vaccinated mice survived with no morbidity, while all unvaccinated controls succumbed to lethal infection. Intracranial injections in mice showed attenuated replication of V4020 vaccine virus as compared to the TC83. We conclude that V4020 vaccine has safety advantage over TC83, while provides equivalent protection in a mouse VEEV challenge model.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Genoma Viral , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , DNA Viral/genética , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/imunologia , Cavalos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Plasmídeos/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Replicação Viral
8.
Viruses ; 10(2)2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439402

RESUMO

Mammarenavirusesare single-stranded RNA viruses with a bisegmented ambisense genome. Ingestion has been shown as a natural route of transmission for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). Due to the mechanism of transmission, epithelial tissues are among the first host cells to come in contact with the viruses, and as such they potentially play a role in spread of virus to naïve hosts. The role of the intestinal epithelia during arenavirus infection remains to be uncharacterized. We have utilized a well-established cell culture model, Caco-2, to investigate the role of intestinal epithelia during intragastric infection. We found that LCMV-Armstrong, LCMV-WE, and Mopeia (MOPV) release infectious progeny via similar patterns. However, the reassortant virus, ML-29, containing the L segment of MOPV and S segment of LASV, exhibits a unique pattern of viral release relative to LCMV and MOPV. Furthermore, we have determined attachment efficacy to Caco-2 cells is potentially responsible for observed replication kinetics of these viruses in a polarized Caco-2 cell model. Collectively, our data shows that viral dissemination and interaction with intestinal epithelia may be host, tissue, and viral specific.


Assuntos
Arenavirus/fisiologia , Mucosa Intestinal/virologia , Animais , Infecções por Arenaviridae/virologia , Células CACO-2 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Vírus Reordenados , Células Vero , Internalização do Vírus , Replicação Viral
9.
PLoS One ; 10(3): e0122839, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822203

RESUMO

Viral hemorrhagic fevers (VHFs) encompass a group of diseases with cardinal symptoms of fever, hemorrhage, and shock. The liver is a critical mediator of VHF disease pathogenesis and high levels of ALT/AST transaminases in plasma correlate with poor prognosis. In fact, Lassa Fever (LF), the most prevalent VHF in Africa, was initially clinically described as hepatitis. Previous studies in non-human primate (NHP) models also correlated LF pathogenesis with a robust proliferative response in the liver. The purpose of the current study was to gain insight into the mechanism of liver injury and to determine the potential role of proliferation in LF pathogenesis. C57Bl/6J mice were infected with either the pathogenic (for NHPs) strain of lymphocytic choriomeningitis virus (LCMV, the prototypic arenavirus), LCMV-WE, or with the non-pathogenic strain, LCMV-ARM. As expected, LCMV-WE, but not ARM, caused a hepatitis-like infection. LCMV-WE also induced a robust increase in the number of actively cycling hepatocytes. Despite this increase in proliferation, there was no significant difference in liver size between LCMV-WE and LCMV-ARM, suggesting that cell cycle was incomplete. Indeed, cells appeared arrested in the G1 phase and LCMV-WE infection increased the number of hepatocytes that were simultaneously stained for proliferation and apoptosis. LCMV-WE infection also induced expression of a non-conventional virus receptor, AXL-1, from the TAM (TYRO3/AXL/MERTK) family of receptor tyrosine kinases and this expression correlated with proliferation. Taken together, these results shed new light on the mechanism of liver involvement in VHF pathogenesis. Specifically, it is hypothesized that the induction of hepatocyte proliferation contributes to expansion of the infection to parenchymal cells. Elevated levels of plasma transaminases are likely explained, at least in part, by abortive cell cycle arrest induced by the infection. These results may lead to the development of new therapies to prevent VHF progression.


Assuntos
Hepatopatias/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Ciclo Celular/genética , Proliferação de Células , Chlorocebus aethiops , Citocinas/genética , Feminino , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Receptores Virais/metabolismo , Células-Tronco/patologia , Regulação para Cima , Células Vero , Internalização do Vírus
10.
Tissue Eng Part A ; 19(1-2): 211-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22971005

RESUMO

The microvasculature is principally composed of two cell types: endothelium and mural support cells. Multiple sources are available for human endothelial cells (ECs) but sources for human microvascular mural cells (MCs) are limited. We derived multipotent mesenchymal progenitor cells from human embryonic stem cells (hES-MC) that can function as an MC and stabilize human EC networks in three-dimensional (3D) collagen-fibronectin culture by paracrine mechanisms. Here, we have investigated the basis for hES-MC-mediated stabilization and identified the pleiotropic growth factor hepatocyte growth factor/scatter factor (HGF/SF) as a putative hES-MC-derived regulator of EC network stabilization in 3D in vitro culture. Pharmacological inhibition of the HGF receptor (Met) (1 µm SU11274) inhibits EC network formation in the presence of hES-MC. hES-MC produce and release HGF while human umbilical vein endothelial cells (HUVEC) do not. When HUVEC are cultured alone the networks collapse, but in the presence of recombinant human HGF or conditioned media from human HGF-transduced cells significantly more networks persist. In addition, HUVEC transduced to constitutively express human HGF also form stable networks by autocrine mechanisms. By enzyme-linked immunosorbent assay, the coculture media were enriched in both angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2), but at significantly different levels (Ang1=159±15 pg/mL vs. Ang2=30,867±2685 pg/mL) contributed by hES-MC and HUVEC, respectively. Although the coculture cells formed stabile network architectures, their morphology suggests the assembly of an immature plexus. When HUVEC and hES-MC were implanted subcutaneously in immune compromised Rag1 mice, hES-MC increased their contact with HUVEC along the axis of the vessel. This data suggests that HUVEC and hES-MC form an immature plexus mediated in part by HGF and angiopoietins that is capable of maturation under the correct environmental conditions (e.g., in vivo). Therefore, hES-MC can function as microvascular MCs and may be a useful cell source for testing EC-MC interactions.


Assuntos
Proteínas Angiogênicas/metabolismo , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Veias Umbilicais/citologia , Animais , Técnicas de Cultura Celular por Lotes/métodos , Comunicação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Veias Umbilicais/metabolismo
11.
Tissue Eng Part A ; 17(11-12): 1537-48, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21284534

RESUMO

Microvascular mural or perivascular cells are required for the stabilization and maturation of the remodeling vasculature. However, much less is known about their biology and function compared to large vessel smooth muscle cells. We have developed lines of multipotent mesenchymal cells from human embryonic stem cells (hES-MC); we hypothesize that these can function as perivascular mural cells. Here we show that the derived cells do not form teratomas in SCID mice and independently derived lines show similar patterns of gene expression by microarray analysis. When exposed to platelet-derived growth factor-BB, the platelet-derived growth factor receptor ß is activated and hES-MC migrate in response to a gradient. We also show that in a serum-free medium, transforming growth factor ß1 (TGFß1) induces robust expression of multiple contractile proteins (α smooth muscle actin, smooth muscle myosin heavy chain, smooth muscle 22α, and calponin). TGFß1 signaling is mediated through the TGFßR1/Alk5 pathway as demonstrated by inhibition of α smooth muscle actin expression by treatment of the Alk5-specific inhibitor SB525334 and stable retroviral expression of the Alk5 dominant negative (K232R). Coculture of human umbilical vein endothelial cell (HUVEC) with hES-MC maintains network integrity compared to HUVEC alone in three-dimensional collagen I-fibronectin by paracrine signaling. Using high-resolution laser confocal microscopy, we show that hES-MC also make direct contact with HUVEC. This demonstrates that hESC-derived mesenchymal cells possess the molecular machinery expected in a perivascular progenitor cells and can play a functional role in stabilizing EC networks in in vitro three-dimensional culture.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais/citologia , Microvasos/citologia , Actinas/metabolismo , Animais , Becaplermina , Linhagem Celular , Colágeno/farmacologia , Proteínas Contráteis/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibronectinas/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-sis , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Teratoma/patologia , Fator de Crescimento Transformador beta1/farmacologia , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA