Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 32(3): 754-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24123662

RESUMO

Signals downstream of Akt can either favor or oppose stem cell (SC) maintenance, but how this dual role can be achieved is still undefined. Using human limbal keratinocyte stem cells (LKSCs), a SC type used in transplantation therapies for corneal regeneration, we show that Akt signaling is prominent in SC populations both in vivo and in vitro, and that Akt1 promotes while Akt2 opposes SC self-renewal. Noteworthy, loss of Akt2 signaling enhances LKSC maintenance ex vivo, whereas Akt1 depletion anticipates SC exhaustion. Mechanistically, the antagonistic functions of Akt1 and Akt2 in SC control are mainly dictated by their differential subcellular distribution, being nuclear Akt2 selectively implicated in FOXO inhibition. Akt2 downregulation favors LKSC maintenance as a result of a gain of FOXO functions, which attenuates the mechanistic target of rapamycin complex one signaling via tuberous sclerosis one gene induction, and promotes growth factor signaling through Akt1. Consistently, Akt2 deficiency also enhances limbal SCs in vivo. Thus, our findings reveal distinct roles for nuclear versus cytosolic Akt signaling in normal epithelial SC control and suggest that the selective Akt2 inhibition may provide novel pharmacological strategies for human LKSC expansion in therapeutic settings and mechanistic research.


Assuntos
Núcleo Celular/enzimologia , Fatores de Transcrição Forkhead/metabolismo , Queratinócitos/citologia , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Células 3T3 , Adulto , Animais , Proliferação de Células , Células Clonais , Ativação Enzimática , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Humanos , Isoenzimas/metabolismo , Limbo da Córnea/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células-Tronco/enzimologia , Transcrição Gênica
2.
Am J Cancer Res ; 4(5): 484-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25232490

RESUMO

Chronic inflammation is a well-recognized pathogenic factor in tumor initiation and progression. Mice lacking the pro-oncogenic transcription factor STAT3 were shown to be protected from both colitis-associated and epidermal cancers induced by the AOM/DSS and DMBA/TPA protocols, respectively. However, these murine models did not distinguish between the two STAT3 isoforms, the full-length STAT3α, believed to exert most pro-oncogenic functions attributed to STAT3, and the shorter STAT3ß, often referred to as a dominant-negative, but possessing specific transcriptional activities. Here we assessed the contribution of STAT3ß to inflammation-driven tumorigenesis making use of mice lacking this isoform, but still expressing STAT3α (STAT3(Δß/Δß)). We show that the lack of STAT3ß leads to exacerbated acute responses to both TPA and DSS, thus confirming its anti-inflammatory role. Enhanced inflammation correlates with earlier tumor onset in both the epidermis and the intestine in STAT3(Δß/Δß) mice. In contrast, overall tumor development and final tumor burden were unaffected. These results suggest that STAT3ß, by limiting inflammation during the initial phases of tumorigenesis, contributes to tissue homeostasis and counteracts malignant transformation and initial tumor growth. Accordingly, the balance between the two STAT3 isoforms, likely determined by the complex signaling networks shaping the tumor microenvironment and driving tumor transformation and progression, is apparently crucial to determine the initial tumor transformation rates in inflammation-associated cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA