Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2306029121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913894

RESUMO

Echolocating bats are among the most social and vocal of all mammals. These animals are ideal subjects for functional MRI (fMRI) studies of auditory social communication given their relatively hypertrophic limbic and auditory neural structures and their reduced ability to hear MRI gradient noise. Yet, no resting-state networks relevant to social cognition (e.g., default mode-like networks or DMLNs) have been identified in bats since there are few, if any, fMRI studies in the chiropteran order. Here, we acquired fMRI data at 7 Tesla from nine lightly anesthetized pale spear-nosed bats (Phyllostomus discolor). We applied independent components analysis (ICA) to reveal resting-state networks and measured neural activity elicited by noise ripples (on: 10 ms; off: 10 ms) that span this species' ultrasonic hearing range (20 to 130 kHz). Resting-state networks pervaded auditory, parietal, and occipital cortices, along with the hippocampus, cerebellum, basal ganglia, and auditory brainstem. Two midline networks formed an apparent DMLN. Additionally, we found four predominantly auditory/parietal cortical networks, of which two were left-lateralized and two right-lateralized. Regions within four auditory/parietal cortical networks are known to respond to social calls. Along with the auditory brainstem, regions within these four cortical networks responded to ultrasonic noise ripples. Iterative analyses revealed consistent, significant functional connectivity between the left, but not right, auditory/parietal cortical networks and DMLN nodes, especially the anterior-most cingulate cortex. Thus, a resting-state network implicated in social cognition displays more distributed functional connectivity across left, relative to right, hemispheric cortical substrates of audition and communication in this highly social and vocal species.


Assuntos
Córtex Auditivo , Quirópteros , Ecolocação , Imageamento por Ressonância Magnética , Animais , Quirópteros/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/diagnóstico por imagem , Ecolocação/fisiologia , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Masculino , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
2.
J Neurosci ; 43(49): 8275-8293, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38073598

RESUMO

Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsia , Lactente , Humanos , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Biomarcadores , Encéfalo/diagnóstico por imagem
3.
Horm Behav ; 118: 104639, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765658

RESUMO

Adult neuroplasticity in the song control system of seasonal songbirds is largely driven by photoperiod-induced increases in testosterone. Prior studies of the relationships between testosterone, song performance and neuroplasticity used invasive techniques, which prevent analyzing the dynamic changes over time and often focus on pre-defined regions-of-interest instead of examining the entire brain. Here, we combined (i) in vivo diffusion tensor imaging (DTI) to assess structural neuroplasticity with (ii) repeated monitoring of song and (iii) measures of plasma testosterone concentrations in thirteen female photosensitive starlings (Sturnus vulgaris) who received a testosterone implant for 3 weeks. We observed fast (days) and slower (weeks) effects of testosterone on song behavior and structural neuroplasticity and determined how these effects correlate on a within-subject level, which suggested separate contributions of the song motor and anterior forebrain pathways in the development of song performance. Specifically, the increase in testosterone correlated with a rapid increase of song rate and RA volume, and with changes in Area X microstructure. After implant removal, these variables rapidly reverted to baseline levels. In contrast, the more gradual improvement of song quality was positively correlated with the fractional anisotropy values (DTI metric sensitive to white matter changes) of the HVC-RA tract and of the lamina mesopallialis, which contains fibers connecting the song control nuclei. Thus, we confirmed many of the previously reported testosterone-induced effects, like the increase in song control nuclei volume, but identified for the first time a more global picture of the spatio-temporal changes in brain plasticity.


Assuntos
Monitoramento Biológico/métodos , Encéfalo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Estorninhos , Telemetria/métodos , Testosterona/farmacologia , Vocalização Animal/efeitos dos fármacos , Animais , Monitoramento Biológico/instrumentação , Encéfalo/metabolismo , Imagem de Tensor de Difusão/instrumentação , Imagem de Tensor de Difusão/métodos , Feminino , Masculino , Sistemas On-Line , Fotoperíodo , Estorninhos/sangue , Estorninhos/fisiologia , Telemetria/instrumentação , Testosterona/sangue
4.
Neurobiol Dis ; 127: 45-52, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30798008

RESUMO

Different types of brain injury, such as status epilepticus (SE), trauma, or stroke may initiate the process of epileptogenesis and lead to the development of temporal lobe epilepsy. Epileptogenesis is characterized by an initial latent period during which impaired network communication and synaptic circuit alterations are occurring. Ultimately, these modifications result in the development of spontaneous recurrent seizures (SRS). Current knowledge on the functional connectivity network changes during epileptogenesis and how network alterations relate to seizure is very limited. To investigate these underlying network connectivity modifications, we imaged epileptic and control rats by means of resting-state functional MRI (rsfMRI) during epileptogenesis. A cohort of animals was video-electroencephalography (video-EEG) monitored continuously over 12 weeks to determine disease severity during the course of disease, with the first SRS appearing around 2 weeks post-SE for most of the animals. Epileptic animals displayed a significant wide-spread hyposynchrony at 2 weeks post-SE, followed by a significant increase in network synchronicity from 2 to 4 weeks post-SE. Interestingly, subjects with a delayed epilepsy onset demonstrated significantly lower synchronicity compared to controls and the epileptic group at 4 weeks post-SE. Finally, network connectivity at 4 weeks post-SE was found to correlate with seizure onset (r = 0.858, p < .0001) and disease severity measured over 12 weeks (e.g. cingulate cortex: r = 0.863, p = .002), suggesting a possible network strengthening upon seizure reoccurrence. Our findings indicate that epileptogenesis is characterized by an initial hyposynchrony of brain networks and the disease-associated progression reflects disease severity.


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Rede Nervosa/fisiopatologia , Estado Epiléptico/fisiopatologia , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Progressão da Doença , Eletroencefalografia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Neuroimagem , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Estado Epiléptico/diagnóstico por imagem
5.
Proc Biol Sci ; 285(1883)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30051835

RESUMO

The appearance of perineuronal nets (PNNs) represents one of the mechanisms that contribute to the closing of sensitive periods for neural plasticity. This relationship has mostly been studied in the ocular dominance model in rodents. Previous studies also indicated that PNN might control neural plasticity in the song control system of songbirds. To further elucidate this relationship, we quantified PNN expression and their localization around parvalbumin interneurons at key time-points during ontogeny in both male and female zebra finches, and correlated these data with the well-described development of song in this species. We also extended these analyses to the auditory system. The development of PNN during ontogeny correlated with song crystallization although the timing of PNN appearance in the four main telencephalic song control nuclei slightly varied between nuclei in agreement with the established role these nuclei play during song learning. Our data also indicate that very few PNN develop in the secondary auditory forebrain areas even in adult birds, which may allow constant adaptation to a changing acoustic environment by allowing synaptic reorganization during adulthood.


Assuntos
Tentilhões/fisiologia , Aprendizagem/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Plasticidade Neuronal , Aves Canoras/fisiologia , Vocalização Animal/fisiologia , Animais , Feminino , Tentilhões/crescimento & desenvolvimento , Masculino , Aves Canoras/crescimento & desenvolvimento
6.
Brain Behav Immun ; 61: 69-79, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017648

RESUMO

Brain inflammation is an important factor in the conversion of a healthy brain into an epileptic one, a phenomenon known as epileptogenesis, offering a new entry point for prognostic tools. The development of anti-epileptogenic therapies to treat before or at disease onset is hampered by our inability to predict the severity of the disease outcome. In a rat model of temporal lobe epilepsy we aimed to assess whether in vivo non-invasive imaging of brain inflammation at disease onset was predictive of spontaneous recurrent seizures (SRS) frequency and severity of depression-like and sensorimotor-related comorbidities. To this end, translocator protein, a biomarker of inflammation, was imaged by means of positron emission tomography (PET) 2 and 4weeks post-status epilepticus using [18F]-PBR111. Translocator protein was highly upregulated 2weeks post-status epilepticus in limbic structures (up to 2.1-fold increase compared to controls in temporal lobe, P<0.001), whereas 4weeks post-status epilepticus, upregulation decreased (up to 1.6-fold increase compared to controls in temporal lobe, P<0.01) and was only apparent in a subset of these regions. Animals were monitored with video-electroencephalography during all stages of disease (acute, latent - first seizures appearing around 2weeks post-status epilepticus - and chronic phases), for a total of 12weeks, in order to determine SRS frequency for each subject (range 0.00-0.83SRS/day). We found that regional PET uptake at 2 and 4weeks post-status epilepticus correlated with the severity of depression-like and sensorimotor-related comorbidities during chronic epilepsy (P<0.05 for each test). Regional PET imaging did not correlate with SRS frequency, however, by applying a multivariate data-driven modeling approach based on translocator protein PET imaging at 2weeks post-status epilepticus, we accurately predicted the frequency of SRS (R=0.92; R2=0.86; P<0.0001) at the onset of epilepsy. This study not only demonstrates non-invasive imaging of translocator protein as a prognostic biomarker to ascertain SRS frequency, but also shows its capability to reflect the severity of depression-like and sensorimotor-related comorbidities. Our results are an encouraging step towards the development of anti-epileptogenic treatments by providing early quantitative assessment of SRS frequency and severity of comorbidities with high clinical relevance.


Assuntos
Encéfalo/diagnóstico por imagem , Encefalite/diagnóstico por imagem , Convulsões/diagnóstico por imagem , Estado Epiléptico/diagnóstico por imagem , Animais , Progressão da Doença , Eletroencefalografia , Masculino , Tomografia por Emissão de Pósitrons , Valor Preditivo dos Testes , Ratos , Ratos Wistar , Recidiva
7.
Neuroimage ; 109: 151-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25583611

RESUMO

INTRODUCTION: The cholinergic system is involved in learning and memory and is affected in neurodegenerative disorders such as Alzheimer's disease. The possibility of non-invasively detecting alterations of neurotransmitter systems in the mouse brain would greatly improve early diagnosis and treatment strategies. The hypothesis of this study is that acute modulation of the cholinergic system might be reflected as altered functional connectivity (FC) and can be measured using pharmacological resting-state functional MRI (rsfMRI). MATERIAL AND METHODS: Pharmacological rsfMRI was performed on a 9.4T MRI scanner (Bruker BioSpec, Germany) using a gradient echo EPI sequence. All mice were sedated with medetomidine. C57BL/6 mice (N = 15/group) were injected with either saline, the cholinergic antagonist scopolamine, or methyl-scopolamine, after which rsfMRI was acquired. For an additional group (N = 8), rsfMRI scans of the same mouse were acquired first at baseline, then after the administration of scopolamine and finally after the additional injection of the cholinergic agonist milameline. Contextual memory was evaluated with the same setup as the pharmacological rsfMRI using the passive avoidance behavior test. RESULTS: Scopolamine induced a dose-dependent decrease of FC between brain regions involved in memory. Scopolamine-induced FC deficits could be recovered completely by milameline for FC between the hippocampus-thalamus, cingulate-retrosplenial, and visual-retrosplenial cortex. FC between the cingulate-rhinal, cingulate-visual and visual-rhinal cortex could not be completely recovered by milameline. This is consistent with the behavioral outcome, where milameline only partially recovered scopolamine-induced contextual memory deficits. Methyl-scopolamine administered at the same dose as scopolamine did not affect FC in the brain. CONCLUSION: The results of the current study are important for future studies in mouse models of neurodegenerative disorders, where pharmacological rsfMRI may possibly be used as a non-invasive read-out tool to detect alterations of neurotransmitter systems induced by pathology or treatment.


Assuntos
Acetilcolina/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Descanso , Transmissão Sináptica/efeitos dos fármacos
8.
Hippocampus ; 25(11): 1418-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25821141

RESUMO

Functional hemispheric asymmetry is a common feature of vertebrate brain organization, yet little is known about how hemispheric dominance is implemented at the neural level. One notable example of hemispheric dominance in birds is the leading role of the left hippocampal formation in controlling navigational processes that support homing in pigeons. Relying on resting state fMRI analyses (where Functional connectivity (FC) can be determined by placing a reference 'seed' for connectivity in one hemisphere), we show that following seeding in either an anterior or posterior region of the hippocampal formation of homing pigeons and starlings, the emergent FC maps are consistently larger following seeding of the left hippocampus. Left seedings are also more likely to result in FC maps that extend to the contralateral hippocampus and outside the boundaries of the hippocampus. The data support the hypothesis that broader FC is one neural-organizational property that confers, with respect to navigation, functional dominance to the left hippocampus of birds.


Assuntos
Aves/fisiologia , Mapeamento Encefálico/psicologia , Lateralidade Funcional/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Animais , Columbidae/fisiologia , Feminino , Imageamento por Ressonância Magnética , Masculino , Estorninhos/fisiologia
9.
Magn Reson Med ; 72(4): 1103-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24285608

RESUMO

PURPOSE: The use of resting-state functional MRI (rsfMRI) in preclinical research is expanding progressively, with the majority of resting-state imaging performed in anesthetized animals. Since anesthesia may change the physiology and, in particular, the neuronal activity of an animal considerably, it may also affect rsfMRI findings. Therefore, this study compared rsfMRI data from awake mice with rsfMRI results obtained from mice anesthetized with α-chloralose (120 mg/kg), urethane (2.5 g/kg), or isoflurane (1%). METHODS: Functional connectivity (FC) was estimated using both independent component analysis (40 components) and ROI-based analysis to zoom in on the effect of different anesthetics on inter-hemispheric FC. RESULTS: The data revealed an important diminishment of cortical interhemispheric FC in both the α-chloralose and urethane groups in comparison with the isoflurane and awake groups. CONCLUSION: When performing FC analysis in anesthetized mice, the impact of anesthetics must be taken into account. The required doses for stable anesthesia during MRI significantly decrease interhemispheric FC.


Assuntos
Encéfalo/fisiologia , Cloralose/farmacologia , Conectoma/métodos , Isoflurano/farmacologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Uretana/farmacologia , Anestésicos Inalatórios , Anestésicos Intravenosos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos
10.
Front Behav Neurosci ; 18: 1418577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355542

RESUMO

The present study aims to investigate whether begging calls elicit specific auditory responses in non-parenting birds, whether these responses are influenced by the hormonal status of the bird, and whether they reflect biparental care for offspring in the European starling (Sturnus vulgaris). An fMRI experiment was conducted to expose non-parenting male and female European starlings to recordings of conspecific nestling begging calls during both artificially induced breeding and non-breeding seasons. This response was compared with their reaction to conspecific individual warbling song motifs and artificial pure tones, serving as social species-specific and artificial control stimuli, respectively. Our findings reveal that begging calls evoke a response in non-parenting male and female starlings, with significantly higher responsiveness observed in the right Field L and the Caudomedial Nidopallium (NCM), regardless of season or sex. Moreover, a significant seasonal variation in auditory brain responses was elicited in both sexes exclusively by begging calls, not by the applied control stimuli, within a ventral midsagittal region of NCM. This heightened response to begging calls, even in non-parenting birds, in the right primary auditory system (Field L), and the photoperiod induced hormonal neuromodulation of auditory responses to offspring's begging calls in the secondary auditory system (NCM), bears resemblance to mammalian responses to hunger calls. This suggests a convergent evolution aimed at facilitating swift adult responses to such calls crucial for offspring survival.

11.
Front Mol Neurosci ; 15: 897039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836548

RESUMO

Thyroid hormones clearly play a role in the seasonal regulation of reproduction, but any role they might play in song behavior and the associated seasonal neuroplasticity in songbirds remains to be elucidated. To pursue this question, we first established seasonal patterns in the expression of thyroid hormone regulating genes in male European starlings employing in situ hybridization methods. Thyroid hormone transporter LAT1 expression in the song nucleus HVC was elevated during the photosensitive phase, pointing toward an active role of thyroid hormones during this window of possible neuroplasticity. In contrast, DIO3 expression was high in HVC during the photostimulated phase, limiting the possible effect of thyroid hormones to maintain song stability during the breeding season. Next, we studied the effect of hypothyroidism on song behavior and neuroplasticity using in vivo MRI. Both under natural conditions as with methimazole treatment, circulating thyroid hormone levels decreased during the photosensitive period, which coincided with the onset of neuroplasticity. This inverse relationship between thyroid hormones and neuroplasticity was further demonstrated by the negative correlation between plasma T3 and the microstructural changes in several song control nuclei and cerebellum. Furthermore, maintaining hypothyroidism during the photostimulated period inhibited the increase in testosterone, confirming the role of thyroid hormones in activating the hypothalamic-pituitary-gonadal (HPG) axis. The lack of high testosterone levels influenced the song behavior of hypothyroid starlings, while the lack of high plasma T4 during photostimulation affected the myelination of several tracts. Potentially, a global reduction of circulating thyroid hormones during the photosensitive period is necessary to lift the brake on neuroplasticity imposed by the photorefractory period, whereas local fine-tuning of thyroid hormone concentrations through LAT1 could activate underlying neuroplasticity mechanisms. Whereas, an increase in circulating T4 during the photostimulated period potentially influences the myelination of several white matter tracts, which stabilizes the neuroplastic changes. Given the complexity of thyroid hormone effects, this study is a steppingstone to disentangle the influence of thyroid hormones on seasonal neuroplasticity.

12.
Neuroimage ; 58(4): 1006-16, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21767653

RESUMO

We aimed to characterize the transgenic Huntington rat model with in vivo imaging and identify sensitive and reliable biomarkers associated with early and progressive disease status. In order to do so, we performed a multimodality (DTI and PET) longitudinal imaging study, during which the same TgHD and wildtype (Wt) rats were repetitively scanned. Surprisingly, the relative ventricle volume was smaller but increased faster in TgHD compared to Wt animals. DTI (mean, axial, radial diffusivity) revealed subtle genotype-specific aging effects in the striatum and its surrounding white matter, already in the presymptomatic stage. Using ¹8F-FDG and ¹8F-Fallypride PET imaging, we were not able to demonstrate genotype-specific aging effects within the striatum. The outcome of this longitudinal study was somewhat surprising as it demonstrated a significant differential aging pattern in TgHD versus Wt animals. Although it seems that the TgHD rat model does not have a sufficient expression of disease yet at the age of 12 months, further validation of this model is highly beneficial since there is still an incomplete understanding of the early disease mechanisms of Huntington's disease.


Assuntos
Envelhecimento/patologia , Doença de Huntington/genética , Animais , Autorradiografia , Benzamidas , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Imagem de Tensor de Difusão , Fluordesoxiglucose F18 , Genótipo , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Processamento de Imagem Assistida por Computador , Masculino , Fenótipo , Tomografia por Emissão de Pósitrons , Pirrolidinas , Compostos Radiofarmacêuticos , Ratos , Ratos Transgênicos
13.
Elife ; 102021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096502

RESUMO

Traditionally, research unraveling seasonal neuroplasticity in songbirds has focused on the male song control system and testosterone. We longitudinally monitored the song behavior and neuroplasticity in male and female starlings during multiple photoperiods using Diffusion Tensor and Fixel-Based techniques. These exploratory data-driven whole-brain methods resulted in a population-based tractogram confirming microstructural sexual dimorphisms in the song control system. Furthermore, male brains showed hemispheric asymmetries in the pallium, whereas females had higher interhemispheric connectivity, which could not be attributed to brain size differences. Only females with large brains sing but differ from males in their song behavior by showing involvement of the hippocampus. Both sexes experienced multisensory neuroplasticity in the song control, auditory and visual system, and cerebellum, mainly during the photosensitive period. This period with low gonadal hormone levels might represent a 'sensitive window' during which different sensory and motor systems in the cerebrum and cerebellum can be seasonally re-shaped in both sexes.


Assuntos
Cerebelo/fisiologia , Cérebro/fisiologia , Plasticidade Neuronal , Estorninhos/fisiologia , Vocalização Animal , Animais , Percepção Auditiva , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Cérebro/diagnóstico por imagem , Cérebro/metabolismo , Imagem de Tensor de Difusão , Estradiol/sangue , Feminino , Masculino , Atividade Motora , Fotoperíodo , Estações do Ano , Caracteres Sexuais , Estorninhos/sangue , Testosterona/sangue , Percepção Visual
14.
Neuroimage Clin ; 31: 102701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34090124

RESUMO

Neuroinflammation is a key component of epileptogenesis, the process leading to acquired epilepsy. In recent years, with the development of non-invasive in vivo positron emission tomography (PET) imaging of translocator protein 18 kDa (TSPO), a marker of neuroinflammation, it has become possible to perform longitudinal studies to characterize neuroinflammation at different disease stages in animal models of epileptogenesis. This study aimed to utilize the prognostic capability of TSPO PET imaging at disease onset (2 weeks post-SE) to categorize epileptic rats with distinct seizure burden based on TSPO levels at disease onset and investigate their association to TSPO expression at the chronic epilepsy stage. Controls (n = 14) and kainic acid-induced status epilepticus (KASE) rats (n = 41) were scanned non-invasively with [18F]PBR111 PET imaging measuring TSPO expression. Animals were monitored using video-electroencephalography (vEEG) up to chronic disease (12 weeks post-SE), at which TSPO levels ([3H]PK11195) as well as other post-mortem abnormalities (namely synaptic density ([3H]UCB-J), neuronal loss (NeuN), and neurodegeneration (FjC)) were investigated. By applying multivariate analysis, TSPO PET imaging at disease onset identified three KASE groups with significantly different spontaneous recurrent seizures (SRS) burden (defined as rare SRS, sporadic SRS, and frequent SRS) (p = 0.003). Interestingly, TSPO levels were significantly different when comparing the three KASE groups (p < 0.0001), with the frequent SRS group characterized only by a limited focal TSPO increase at disease onset. On the contrary, TSPO measured during chronic epilepsy was found to be the highest in the frequent SRS group and correlated with seizure burden (r = 0.826, p < 0.0001). Importantly, early and chronic TSPO levels did not correlate (r = -0.05). Finally, significant pathological changes in neuronal loss, synaptic density, and neurodegeneration were found not only when compared to control animals (p < 0.01), but also between the three KASE rat categories in the hippocampus (p < 0.05). Early and chronic TSPO upregulation following epileptogenic insult appear to be driven by two superimposed dynamic processes. The former is associated with epileptogenesis as measured at disease onset, while the latter is related to seizure frequency as quantified during chronic epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Receptores de GABA-A/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Imagem Molecular , Fenótipo , Tomografia por Emissão de Pósitrons , Ratos , Regulação para Cima
15.
Brain Struct Funct ; 221(6): 3067-79, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26195064

RESUMO

Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders.


Assuntos
Acetilcolina/fisiologia , Encéfalo/fisiologia , Receptores Muscarínicos/fisiologia , Receptores de Serotonina/fisiologia , Serotonina/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Hipnóticos e Sedativos/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Medetomidina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos/administração & dosagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Piperazinas/administração & dosagem , Escopolamina/administração & dosagem , Antagonistas da Serotonina/administração & dosagem
16.
Brain Struct Funct ; 221(4): 1899-909, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25690327

RESUMO

Because of their sophisticated vocal behaviour, their social nature, their high plasticity and their robustness, starlings have become an important model species that is widely used in studies of neuroethology of song production and perception. Since magnetic resonance imaging (MRI) represents an increasingly relevant tool for comparative neuroscience, a 3D MRI-based atlas of the starling brain becomes essential. Using multiple imaging protocols we delineated several sensory systems as well as the song control system. This starling brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. Additionally, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. The starling brain atlas is freely available for the scientific community.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Estorninhos/anatomia & histologia , Animais , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/anatomia & histologia , Tomografia Computadorizada por Raios X/métodos
17.
Front Pharmacol ; 6: 231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539115

RESUMO

Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal's physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.

18.
PLoS One ; 9(9): e106156, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25181007

RESUMO

Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.


Assuntos
Encéfalo/fisiologia , Sedação Profunda , Rede Nervosa/fisiologia , Animais , Imageamento por Ressonância Magnética , Masculino , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
19.
Curr Opin Pharmacol ; 13(5): 813-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23856429

RESUMO

When new compounds targeting the brain are developed, it is important to assess both the acute and chronic effects on brain functioning. This can be done non-invasively using a technique called functional magnetic resonance imaging (fMRI). This review discusses the possibilities of both stimulation-based and resting state fMRI to study pharmacological modulations of the rodent brain. Moreover, attention is given to the use of anesthetics which could importantly influence the outcome of both techniques.


Assuntos
Encéfalo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Neurotransmissores/farmacologia , Animais , Encéfalo/fisiologia , Roedores
20.
Behav Brain Res ; 239: 43-50, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23137696

RESUMO

At present, functional MRI (fMRI) is increasingly used in animal research but the disadvantage is that the majority of the imaging is applied in anaesthetized animals. Only a few articles present results obtained in awake rodents. In this study both traditional fMRI and resting state (rsfMRI) were applied to four pigeons, that were trained to remain still while being imaged, removing the need for anesthesia. This is the first time functional connectivity measurements are performed in a non-mammalian species. Since the visual system of pigeons is a well-known model for brain asymmetry, the focus of the study was on the neural substrate of the visual system. For fMRI a visual stimulus was used and functional connectivity measurements were done with the entopallium (E; analog for the primary visual cortex) as a seed region. Interestingly in awake pigeons the left E was significantly functionally connected to the right E. Moreover we compared connectivity maps for a seed region in both hemispheres resulting in a stronger bilateral connectivity starting from left E then from right E. These results could be used as a starting point for further imaging studies in awake birds and also provide a new window into the analysis of hemispheric dominance in the pigeon.


Assuntos
Columbidae/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Visuais/fisiologia , Animais , Dominância Cerebral/fisiologia , Neuroimagem Funcional/métodos , Habituação Psicofisiológica , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA