Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prog Oceanogr ; 218: 1-15, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269259

RESUMO

Achieving gender equity is a long-standing and ubiquitous challenge in marine science. Creating equitable experiences for all genders in marine science requires recognizing scientists' intersectional identities, and how this leads to unique lived experiences of privilege and marginalization. One approach to increase equitable experiences for women in marine science is to create affinity groups where women can learn from each other, share their experiences, and provide support and mentorship. The Society for Women in Marine Science (SWMS) is one such organization, founded to amplify the work of early career women in marine science and create community, through events such as full-day symposium events. This study investigates the experiences of symposium attendees for four events held from 2018 through 2020, as reported in pre- and post-symposium surveys. We used quantitative analysis of the open-ended survey questions to examine the demographics of attendees and their fields of study. Qualitative thematic analysis identified the most effective aspects of the symposia, areas of logistical and content improvement for future symposia, and emphasized the unique challenges women in marine science experience. The majority of symposium attendees were white graduate students. Nearly all attendees identified as women, with a small number of men and non-binary individuals. Symposia attendees enjoyed opportunities for professional development and interactions with colleagues across career stages. We present recommendations for continuing to foster a sense of belonging in marine science and STEM more broadly, both specific to SWMS and transferable actions that can be applied for other affinity groups. These suggestions include empathetic event logistics, continual democratic evaluation, identity reflexivity among group leaders, and professional development activities targeted towards the unique needs of the affinity group. The positive responses received from SWMS's adaptive integration of survey results into symposia demonstrate that incorporating these recommendations and findings will help create an inclusive wave in marine science.

2.
Integr Comp Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992208

RESUMO

Fishes use their mechanosensory lateral line system to detect local water flows in different behavioral contexts, including the detection of prey. The lateral line system is comprised of neuromast receptor organs on the skin (superficial neuromasts) and within bony canals (canal neuromasts). Most fishes have one cranial lateral line canal phenotype, but the silverjaw minnow (Ericymba buccata) has two: narrow canals dorsal and caudal to the eye and widened canals ventral to the eye and along the mandible. The ventrally directed widened lateral line canals have been hypothesized to be an adaptation for detection of their benthic prey. Multiple morphological methods were used to describe the narrow and widened canals and canal neuromasts in detail. The primary distribution of hundreds of superficial neuromasts and taste buds ventral to the eye and on the mandible (described here for the first time) suggests additional sensory investment for detecting flow and chemical stimuli emanating from benthic prey. The hypothesis that the lateral line system mediates prey localization was tested by measuring five parameters in behavioral trials in which the combination of sensory modalities available to fish was manipulated (four experimental treatments). Fish detected and localized prey regardless of available sensory modalities and they were able to detect prey in the dark in the absence of lateral line input (lateral line ablation with neomycin sulfate) revealing that chemoreception was sufficient to mediate benthic prey detection, localization, and consumption. However, elimination of lateral line input resulted in a change in the angle of approach to live (mobile) prey even when visual input was available, suggesting that mechanosensory input contributes to the successful detection and localization of prey. The results of this study demonstrate that the extraordinary lateral line canal system of the silverjaw minnow, in addition to the large number of superficial neuromasts, and the presence of numerous extraoral taste buds, likely represent adaptations for multimodal integration of sensory inputs contributing to foraging behavior in this species. The morphological and behavioral results of this study both suggest that this species would be an excellent model for future comparative structural and functional studies of sensory systems in fishes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA