Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202403494, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38551580

RESUMO

Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2 and MoS2 under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p-type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.

2.
J Am Chem Soc ; 145(3): 1855-1865, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642916

RESUMO

Cocrystal engineering, involving the assembly of two or more components into a highly ordered solid-state superstructure, has emerged as a popular strategy for tuning the photophysical properties of crystalline materials. The reversible co-assembly and disassembly of multicomponent cocrystals and their reciprocal transformation in the solid state remain challenging objectives. Herein, we report a color-tunable upconversion-emission switch based on the interconversion between two cocrystals. One red- and one yellow-emissive cocrystal, composed of an electron-deficient naphthalenediimide-based triangular macrocycle and different electron donors, have been obtained. The red- and yellow-emissive cocrystals undergo reversible transformations on exchanging the electron donors. Benefiting from intermolecular charge transfer interactions, the two cocrystals display superior two-photon excited upconversion emission. Accompanying the interconversion of the two cocrystals, their luminescent color changes between red and yellow, forming a dual-color upconversion-emission switch. This research provides a rare yet critical example involving precise control of cocrystal-to-cocrystal transformation and affords a reference for fabricating color-tunable nonlinear optical materials in the solid state.

3.
J Am Chem Soc ; 145(33): 18391-18401, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565777

RESUMO

Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.

4.
Phys Rev Lett ; 128(20): 206801, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657902

RESUMO

X-ray standing-wave (XSW) excited photoelectron emission was used to measure the site-specific valence band (VB) for ½ monolayer (ML) Pt grown on a SrTiO_{3} (001) surface. The XSW induced modulations in the core level (CL), and VB photoemission from the surface and substrate atoms were monitored for three hkl substrate Bragg reflections. The XSW CL analysis shows the Pt to have a face-centered-cubic-like cube-on-cube epitaxy with the substrate. The XSW VB information compares well to a density functional theory calculated projected density of states from the surface and substrate atoms. Overall, this Letter represents a novel method for determining the contribution to the density of states by valence electrons from specific atomic surface sites.

5.
J Am Chem Soc ; 143(4): 1984-1992, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33378203

RESUMO

We report the molecular recognition of the Au(CN)2- anion, a crucial intermediate in today's gold mining industry, by α-cyclodextrin. Three X-ray single-crystal superstructures-KAu(CN)2⊂α-cyclodextrin, KAu(CN)2⊂(α-cyclodextrin)2, and KAg(CN)2⊂(α-cyclodextrin)2-demonstrate that the binding cavity of α-cyclodextrin is a good fit for metal-coordination complexes, such as Au(CN)2- and Ag(CN)2- with linear geometries, while the K+ ions fulfill the role of linking α-cyclodextrin tori together as a result of [K+···O] ion-dipole interactions. A 1:1 binding stoichiometry between Au(CN)2- and α-cyclodextrin in aqueous solution, revealed by 1H NMR titrations, has produced binding constants in the order of 104 M-1. Isothermal calorimetry titrations indicate that this molecular recognition is driven by a favorable enthalpy change overcoming a small entropic penalty. The adduct formation of KAu(CN)2⊂α-cyclodextrin in aqueous solution is sustained by multiple [C-H···π] and [C-H···anion] interactions in addition to hydrophobic effects. The molecular recognition has also been investigated by DFT calculations, which suggest that the 2:1 binding stoichiometry between α-cyclodextrin and Au(CN)2- is favored in the presence of ethanol. We have demonstrated that this molecular recognition process between α-cyclodextrin and KAu(CN)2 can be applied to the stripping of gold from the surface of activated carbon at room temperature. Moreover, this stripping process is selective for Au(CN)2- in the presence of Ag(CN)2-, which has a lower binding affinity toward α-cyclodextrin. This molecular recognition process could, in principle, be integrated into commercial gold-mining protocols and lead to significantly reduced costs, energy consumption, and environmental impact.

6.
J Am Chem Soc ; 143(51): 21532-21540, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34914390

RESUMO

Molecularly derived single-site heterogeneous catalysts can bridge the understanding and performance gaps between conventional homogeneous and heterogeneous catalysis, guiding the rational design of next-generation catalysts. While impressive advances have been made with well-defined oxide supports, the structural complexity of other supports and the nature of the grafted surface species present an intriguing challenge. In this study, single-site Mo(═O)2 species grafted onto reduced graphene oxide (rGO/MoO2) are characterized by XPS, DRIFTS, powder XRD, N2 physisorption, NH3-TPD, aqueous contact angle, active site poisoning assay, Mo EXAFS, model compound single-crystal XRD, DFT, and catalytic performance. NH3-TPD reveals that the anchored MoO2 moiety is not strongly acidic, while Mo 3d5/2 XPS assigns the oxidation state as Mo(VI), and XRD shows little rGO periodicity change on MoO2 grafting. Contact angle analysis shows that MoO2 grafting consumes rGO surface polar groups, yielding a more hydrophobic surface. The rGO/MoO2 DRIFTS assigns features at 959 and 927 cm-1 to the symmetric and antisymmetric Mo═O stretching modes, respectively, of an isolated cis-(O═Mo═O) moiety, in agreement with DFT computation. Moreover, the Mo EXAFS rGO/MoO2 structural data are consistent with isolated (C-O)2-Mo(═O)2 species having two Mo═O bonds and two Mo-O bonds at distances of 1.69(3) and 1.90(3) Å, respectively. rGO/MoO2 is also more active than the previously reported AC/MoO2 catalyst, with reductive carbonyl coupling TOFs approaching 1.81 × 103 h-1. rGO/MoO2 is environmentally robust and multiply recyclable with 69 ± 2% of the Mo sites catalytically significant. Overall, rGO/MoO2 is a structurally well-defined and versatile single-site Mo(VI) dioxo heterogeneous catalytic system.

7.
J Am Chem Soc ; 143(48): 20403-20410, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812619

RESUMO

Reported herein are two functionalized crown ether strapped calix[4]pyrroles, H1 and H2. As inferred from competitive salt binding experiments carried out in nitrobenzene-d5 and acetonitrile-d3, these hosts capture LiCl selectively over four other test salts, viz. NaCl, KCl, MgCl2, and CaCl2. Support for the selectivity came from density functional theory (DFT) calculations carried out in a solvent continuum. These theoretical analyses revealed a higher innate affinity for LiCl in the case of H1, but a greater selectivity relative to NaCl in the case of H2, recapitulating that observed experimentally. Receptors H1 and H2 were outfitted with methacrylate handles and subject to copolymerization with acrylate monomers and cross-linkers to yield gels, G1 and G2, respectively. These two gels were found to adsorb lithium chloride preferentially from an acetonitrile solution containing a mixture of LiCl, NaCl, KCl, MgCl2, and CaCl2 and then release the lithium chloride in methanol. The gels could then be recycled for reuse in the selective adsorption of LiCl. As such, the present study highlights the use of solvent polarity switching to drive separations with potential applications in lithium purification and recycling.

8.
J Am Chem Soc ; 143(38): 15688-15700, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34505510

RESUMO

The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.

9.
J Am Chem Soc ; 143(7): 2886-2895, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577309

RESUMO

The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy, called the electrostatic anchor, formed through the efficient Coulombic interaction between the gold electrodes and the positively charged pyridinium terminal groups. Our results show that these pyridinium groups serve as efficient electrostatic anchors forming robust gold-molecule-gold junctions. We have also observed binary switching in dicationic viologen molecular junctions, demonstrating an electron injection-induced redox switching in single-molecule junctions. We attribute the difference in low- and high-conductance states to a dicationic ground state and a radical cationic metastable state, respectively. Overall, this anchoring strategy and redox-switching mechanism could constitute the basis for a new class of redox-activated single-molecule switches.

10.
J Am Chem Soc ; 143(1): 163-175, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347315

RESUMO

The solid-state properties of organic radicals depend on radical-radical interactions that are influenced by the superstructure of the crystalline phase. Here, we report the synthesis and characterization of a substituted tetracationic cyclophane, cyclobis(paraquat-p-1,4-dimethoxyphenylene), which associates in its bisradical dicationic redox state with the methyl viologen radical cation (MV•+) to give a 1:1 inclusion complex. The (super)structures of the reduced cyclophane and this 1:1 complex in the solid state deviate from the analogous (super)structures observed for the reduced state of cyclobis(paraquat-p-phenylene) and that of its trisradical tricationic complex. Titration experiments reveal that the methoxy substituents on the p-phenylene linkers do not influence binding of the cyclophane toward small neutral guests-such as dimethoxybenzene and tetrathiafulvalene-whereas binding of larger radical cationic guests such as MV•+ by the reduced cyclophane decreases 10-fold. X-ray diffraction analysis reveals that the solid-state superstructure of the 1:1 complex constitutes a discrete entity with weak intermolecular orbital overlap between neighboring complexes. Transient nutation EPR experiments and DFT calculations confirm that the complex has a doublet spin configuration in the ground state as a result of the strong orbital overlap, while the quartet-state spin configuration is higher in energy and inaccessible at ambient temperature. Superconducting quantum interference device (SQUID) measurements reveal that the trisradical tricationic complexes interact antiferromagnetically and form a one-dimensional Heisenberg antiferromagnetic chain along the a-axis of the crystal. These results offer insights into the design and synthesis of organic magnetic materials based on host-guest complexes.

11.
J Am Chem Soc ; 143(16): 6123-6139, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848146

RESUMO

The end-capping group (EG) is the essential electron-withdrawing component of nonfullerene acceptors (NFAs) in bulk heterojunction (BHJ) organic solar cells (OSCs). To systematically probe the impact of two frequent EG functionalization strategies, π-extension and halogenation, in A-DAD-A type NFAs, we synthesized and characterized four such NFAs: BT-BIC, LIC, L4F, and BO-L4F. To assess the relative importance of these strategies, we contrast these NFAs with the baseline acceptors, Y5 and Y6. Up to 16.6% power conversion efficiency (PCE) in binary inverted OSCs with BT-BO-L4F combining π-extension and halogenation was achieved. When these two factors are combined, the effect on optical absorption is cumulative. Single-crystal π-π stacking distances are similar for the EG strategies of π-extension. Increasing the alkyl substituent length from BT-L4F to BT-BO-L4F significantly alters the packing motif and eliminates the EG core interactions of BT-L4F. Electronic structure computations reveal some of the largest NFA π-π electronic couplings observed to date, 103.8 meV in BT-L4F and 47.5 meV in BT-BO-L4F. Computed electronic reorganization energies, 132 and 133 meV for BT-L4F and BT-BO-L4F, respectively, are also lower than Y6 (150 meV). BHJ blends show preferential π-face-on orientation, and both fluorination and π-extension increase NFA crystallinity. Femto/nanosecond transient absorption spectroscopy (fs/nsTA) and integrated photocurrent device analysis (IPDA) indicate that π-extension modifies the phase separation to enhance film ordering and carrier mobility, while fluorination suppresses unimolecular recombination. This systematic study highlights the synergistic effects of NFA π-extension and fluorination in affording efficient OSCs and provides insights into designing next-generation materials.

12.
Inorg Chem ; 60(5): 3460-3470, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560112

RESUMO

Tellurium catecholate complexes were investigated to probe the redox chemistry of tellurium, whose oxidation state can span from -2 to +6. Treating TeO2 with catechols resulted in tellurium coordination complexes in high yields within minutes to hours at room temperature or with extended heating, depending on the ligand substituents, giving Te(IV) complexes of the form Te(C)2, where C = 3,5-di-tert-butylcatecholate, o-catecholate, or tetrachlorocatecholate. The redox behavior of these complexes was investigated through addition of organic oxidants, giving nearly quantitative adducts of pyridine N-oxide or N-methylmorpholine N-oxide with each tellurium complex, the latter set leading to ligand oxidation upon heating. Each compound was characterized crystallographically and computationally, providing data consistent with a mostly electrostatic interaction and very little covalent character between the N-oxide and Te complex. The Te N-oxide bond orders are consistently lower than those with the catechol derivatives, as characterized with the Mayer, Gopinathan-Jug (G-J), and first Nalewajski-Mrozek (N-M1) bond indices. The tellurium lone pair is energetically buried by 1.93-2.81 eV, correlating with the observation that the ligands are more reactive than the tellurium center toward oxidation. This combined experimental and theoretical study finds structure-property relationships between ligand design and reactivity that will aid in future efforts for the recovery of tellurium.

13.
J Phys Chem A ; 125(4): 1093-1102, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497573

RESUMO

We present a method based on second linear response time-dependent density functional theory (TDDFT) to calculate permanent and transition multipoles of excited states, which are required to compute excited-state absorption/emission spectra and multiphoton optical processes, among others. In previous work, we examined computations based on second linear response theory in which linear response TDDFT was employed twice. In contrast, the present methodology requires information from only a single linear response calculation to compute the excited-state properties. These are evaluated analytically through various algebraic operations involving electron repulsion integrals and excitation vectors. The present derivation focuses on full many-body wave functions instead of single orbitals, as in our previous approach. We test the proposed method by applying it to several diatomic and triatomic molecules. This shows that the computed excited-state dipoles are consistent with respect to reference equation-of-motion coupled-cluster calculations.

14.
Angew Chem Int Ed Engl ; 60(32): 17587-17594, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34031957

RESUMO

The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo-binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co-crystallization and concomitant co-precipitation between [PtCl6 ]2- dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6 ]2- dianion recognition is driven by weak [Pt-Cl⋅⋅⋅H-C] hydrogen bonding and [Pt-Cl⋅⋅⋅C=O] ion-dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt- and Pd- or Rh-based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6 ]2- dianions from a mixture of [PtCl6 ]2- , [PdCl4 ]2- , and [RhCl6 ]3- anions. This protocol could be exploited to recover platinum from spent vehicular three-way catalytic converters and other platinum-bearing metal waste.

15.
J Am Chem Soc ; 142(7): 3281-3295, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986877

RESUMO

Quantum mechanical embedding methods hold the promise to transform not just the way calculations are performed, but to significantly reduce computational costs and improve scaling for macro-molecular systems containing hundreds if not thousands of atoms. The field of embedding has grown increasingly broad with many approaches of different intersecting flavors. In this perspective, we lay out the methods into two streams: QM:MM and QM:QM, showcasing the advantages and disadvantages of both. We provide a review of the literature, the underpinning theories including our contributions, and we highlight current applications with select examples spanning both materials and life sciences. We conclude with prospects and future outlook on embedding, and our view on the use of universal test case scenarios for cross-comparisons of the many available (and future) embedding theories.

16.
J Am Chem Soc ; 142(36): 15488-15495, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32815721

RESUMO

Colloidal quantum dots (QDs) have shown promise over the last few decades for a range of applications including single photon emission, in vivo imaging, and photocatalysis. Recent experiments demonstrated that QDs impart stereoselectivity to triplet excited-state [2 + 2] cycloaddition reactions of alkenes photocatalyzed by the QD through self-assembly of the reagent molecules on the QD surface, but these experiments did not reveal the precise geometries of surface-bound molecules or their interactions with surface atoms. Here, a theoretical mechanistic approach is used to study such interactions for [2 + 2] cycloadditions of 4-vinylbenzoic acid derivatives on CdSe QDs. Spin-polarized periodic density functional theory (DFT) and nonperiodic DFT calculations are deployed to determine the origin of the selectivity for the syn diastereomer of the resultant tetrasubstituted cyclobutane product via atomistic modeling of the CdSe surface and substrates, determination of the thermodynamic energies of reactions for each step, the intermolecular interactions between the substrates, and the triplet state reaction paths. The calculations indicate that reaction selectivity arises from preferred binding of pairs through intermolecular interactions of substrate molecules on the QD surface in a syn-precursor structure followed by dimerization after triplet excitation. These mechanisms are generalizable to other metal-enriched QD surfaces that have a similar surface structure as that of CdSe, such as InSe or CdTe. Design principles for anti diastereomer derivatives are also discussed.

17.
J Am Chem Soc ; 142(39): 16849-16860, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32886881

RESUMO

One ring threaded by two other rings to form a non-intertwined ternary ring-in-rings motif is a challenging task in noncovalent synthesis. Constructing multicolor photoluminescence systems with tunable properties is also a fundamental research goal, which can lead to applications in multidimensional biological imaging, visual displays, and encryption materials. Herein, we describe the design and synthesis of binary and ternary ring-in-ring(s) complexes, based on an extended tetracationic cyclophane and cucurbit[8]uril. The formation of these complexes is accompanied by tunable multicolor fluorescence outputs. On mixing equimolar amounts of the cyclophane and cucurbit[8]uril, a 1:1 ring-in-ring complex is formed as a result of hydrophobic interactions associated with a favorable change in entropy. With the addition of another equivalent of cucurbit[8]uril, a 1:2 ring-in-rings complex is formed, facilitated by additional ion-dipole interactions involving the pyridinium units in the cyclophane and the carbonyl groups in cucurbit[8]uril. Because of the narrowing in the energy gaps of the cyclophane within the rigid hydrophobic cavities of cucurbit[8]urils, the binary and ternary ring-in-ring(s) complexes emit green and bright yellow fluorescence, respectively. A series of color-tunable emissions, such as sky blue, cyan, green, and yellow with increased fluorescence lifetimes, can be achieved by simply adding cucurbit[8]uril to an aqueous solution of the cyclophane. Notably, the smaller cyclobis(paraquat-p-phenylene), which contains the same p-xylylene linkers as the extended tetracationic cyclophane, does not form ring-in-ring(s) complexes with cucurbit[8]uril. The encapsulation of this extended tetracationic cyclophane by both one and two cucurbit[8]urils provides an incentive to design and synthesize more advanced supramolecular systems, as well as opening up a feasible approach toward achieving tunable multicolor photoluminescence with single chromophores.

18.
J Am Chem Soc ; 142(34): 14532-14547, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32698577

RESUMO

Emerging nonfullerene acceptors (NFAs) with crystalline domains enable high-performance bulk heterojunction (BHJ) solar cells. Thermal annealing is known to enhance the BHJ photoactive layer morphology and performance. However, the microscopic mechanism of annealing-induced performance enhancement is poorly understood in emerging NFAs, especially regarding competing factors. Here, optimized thermal annealing of model system PBDB-TF:Y6 (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]-thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) decreases the open circuit voltage (VOC) but increases the short circuit current (JSC) and fill factor (FF) such that the resulting power conversion efficiency (PCE) increases from 14 to 15% in the ambient environment. Here we systematically investigate these thermal annealing effects through in-depth characterizations of carrier mobility, film morphology, charge photogeneration, and recombination using SCLC, GIXRD, AFM, XPS, NEXAFS, R-SoXS, TEM, STEM, fs/ns TA spectroscopy, 2DES, and impedance spectroscopy. Surprisingly, thermal annealing does not alter the film crystallinity, R-SoXS characteristic size scale, relative average phase purity, or TEM-imaged phase separation but rather facilitates Y6 migration to the BHJ film top surface, changes the PBDB-TF/Y6 vertical phase separation and intermixing, and reduces the bottom surface roughness. While these morphology changes increase bimolecular recombination (BR) and lower the free charge (FC) yield, they also increase the average electron and hole mobility by at least 2-fold. Importantly, the increased µh dominates and underlies the increased FF and PCE. Single-crystal X-ray diffraction reveals that Y6 molecules cofacially pack via their end groups/cores, with the shortest π-π distance as close as 3.34 Å, clarifying out-of-plane π-face-on molecular orientation in the nanocrystalline BHJ domains. DFT analysis of Y6 crystals reveals hole/electron reorganization energies of as low as 160/150 meV, large intermolecular electronic coupling integrals of 12.1-37.9 meV rationalizing the 3D electron transport, and relatively high µe of 10-4 cm2 V-1 s-1. Taken together, this work clarifies the richness of thermal annealing effects in high-efficiency NFA solar cells and tasks for future materials design.

19.
J Phys Chem A ; 124(28): 5954-5962, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32543853

RESUMO

We recently proposed domain separated density functional theory (DS-DFT), a framework that allows for the combination of different levels of theory for the computation of the electronic structure of molecules. This work discusses the application of DS-DFT to the computation of transition-state energy barriers and optical absorption spectra. We considered several hydrogen abstraction reactions and optical spectra of molecule/metal cluster systems, including the absorption of individual species such as carbon monoxide, methane, and molecular hydrogen to a Li6 cluster. We present and discuss two domain-separated methods: (i), the screened-density approximation (SDA) and (ii) linearly weighted exchange (LWE). We find that SDA, which is applied as a hybridization based on atomic domains, could be useful to computing energy barriers, whereas LWE is suited for the analysis of electronic properties such as ground-state gaps, excitation energies, and oscillator strengths.

20.
Nano Lett ; 19(12): 8956-8963, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682761

RESUMO

Coherence is a significant factor in nanoscale electronic insulator technology and necessitates an understanding of the structure-property relationship between constructive and destructive quantum interference. This is particularly important in organic dielectric circuitry, which is the subject of this work. It is known that molecular wires composed of (i) meta-substituted phenylene rings, (ii) cross-conjugated double bonds (orthogonal to the molecular long axis), and (iii) single bonds can dramatically reduce electrical transmission. Here we add to these tools the use of an unexplored molecular shape to create strong and counterintuitive interference: a fully conjugated molecular wire with a structure that is forced back on itself in a Z shape, thereby exhibiting remarkably low conductance (G = 0.43 × 10-9 S) even though the phenylene arrangements are ortho- rather than meta-disposed. We call these Z-shaped molecules having ultralow conduction Z-ortho-regio-resistive organics (ZORROs). Here we analyze a series of ZORRO molecules and find them to have significant insulating properties in the coherent electron-transport regime due to interfering transmission pathways in the phenylene rings. Importantly, we find that both electron-withdrawing (fluorine) and electron-donating (methoxy) substituents enhance the transmission, which is not desirable. The former is due to the suppression of the destructive quantum interference at the F site, thereby enhancing the overall transmission, much like a Büttiker probe. The latter is due to a methoxy unit resonance additive effect, akin to oxygen doping, and positively contributes to the transmission. We then examine the effects of replacing the phenylene rings with 4,5- and 3,4-disubstituted thiophenes and how this ZORRO modification further reduces the transmission. An ultralow conductance of 0.13 × 10-9 S and a relatively high dielectric constant (εr) of ∼5 are predicted for the 3,4-thiophene ZORRO derivative, which closely resembles two cross-conjugated units, making it an intriguing candidate for a gate dielectric material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA