Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Pathol ; 194(2): 180-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029923

RESUMO

A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.


Assuntos
Doenças Pulmonares Intersticiais , Síndrome da Persistência do Padrão de Circulação Fetal , Recém-Nascido , Criança , Adulto , Humanos , Membrana Basal , Alvéolos Pulmonares , Pulmão , Capilares
2.
FASEB J ; 38(19): e70105, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39387631

RESUMO

The renin-angiotensin-aldosterone system (RAAS) plays a critical role in the regulation of blood pressure and fluid balance, with angiotensin-converting enzyme (ACE) being a key transmembrane enzyme that converts angiotensin I to angiotensin II. Hence, ACE activity is an important drug target in cardiovascular pathologies such as hypertension. Our study demonstrates that human pulmonary microvascular endothelial cells (HPMECs) are an important source of proteolytically released ACE. The proteolytic release of transmembrane proteins, a process known as ectodomain shedding, is facilitated by membrane proteases called sheddases. By knockout and inhibition studies, we identified ADAM10 (A disintegrin and metalloprotease 10) as a primary sheddase responsible for ACE release in HEK293 cells. The function of ADAM10 as primary, constitutive sheddase of ACE was confirmed in HPMECs. Moreover, we demonstrated the physiological relevance of ADAM10 for ACE shedding in ex vivo precision cut lung slices (PCLS) from human and mouse lungs. Notably, ADAM17 activity is not directly involved in ACE shedding but indirectly by regulating ACE mRNA and protein levels, leading to increased ADAM10-mediated ACE shedding. Importantly, soluble ACE generated by shedding is enzymatically active and can thereby participate in systemic RAAS functions. Taken together, our findings highlight the critical role of ADAM10 (directly) and ADAM17 (indirectly) in ACE shedding and RAAS modulation.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Pulmão , Proteínas de Membrana , Peptidil Dipeptidase A , Humanos , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Animais , Camundongos , Pulmão/metabolismo , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Células HEK293 , Células Endoteliais/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Sistema Renina-Angiotensina/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Endotélio Vascular/metabolismo
3.
Am J Respir Cell Mol Biol ; 71(4): 388-406, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39189891

RESUMO

Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.


Assuntos
Endotélio Vascular , Pulmão , Humanos , Pulmão/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Animais , Estados Unidos , Sociedades Médicas , Pneumopatias/patologia , Pneumopatias/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia
4.
Angiogenesis ; 27(3): 293-310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38580869

RESUMO

In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.


Assuntos
Neovascularização Patológica , Animais , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Patológica/patologia , Doenças Respiratórias/fisiopatologia , Doenças Respiratórias/patologia , Remodelação Vascular
5.
Radiology ; 312(1): e232731, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-39012246

RESUMO

Background Current clinical imaging modalities such as CT and MRI provide resolution adequate to diagnose cardiovascular diseases but cannot depict detailed structural features in the heart across length scales. Hierarchical phase-contrast tomography (HiP-CT) uses fourth-generation synchrotron sources with improved x-ray brilliance and high energies to provide micron-resolution imaging of intact adult organs with unprecedented detail. Purpose To evaluate the capability of HiP-CT to depict the macro- to microanatomy of structurally normal and abnormal adult human hearts ex vivo. Materials and Methods Between February 2021 and September 2023, two adult human donor hearts were obtained, fixed in formalin, and prepared using a mixture of crushed agar in a 70% ethanol solution. One heart was from a 63-year-old White male without known cardiac disease, and the other was from an 87-year-old White female with a history of multiple known cardiovascular pathologies including ischemic heart disease, hypertension, and atrial fibrillation. Nondestructive ex vivo imaging of these hearts without exogenous contrast agent was performed using HiP-CT at the European Synchrotron Radiation Facility. Results HiP-CT demonstrated the capacity for high-spatial-resolution, multiscale cardiac imaging ex vivo, revealing histologic-level detail of the myocardium, valves, coronary arteries, and cardiac conduction system across length scales. Virtual sectioning of the cardiac conduction system provided information on fatty infiltration, vascular supply, and pathways between the cardiac nodes and adjacent structures. HiP-CT achieved resolutions ranging from gross (isotropic voxels of approximately 20 µm) to microscopic (approximately 6.4-µm voxel size) to cellular (approximately 2.3-µm voxel size) in scale. The potential for quantitative assessment of features in health and disease was demonstrated. Conclusion HiP-CT provided high-spatial-resolution, three-dimensional images of structurally normal and diseased ex vivo adult human hearts. Whole-heart image volumes were obtained with isotropic voxels of approximately 20 µm, and local regions of interest were obtained with resolution down to 2.3-6.4 µm without the need for sectioning, destructive techniques, or exogenous contrast agents. Published under a CC BY 4.0 license Supplemental material is available for this article. See also the editorial by Bluemke and Pourmorteza in this issue.


Assuntos
Coração , Tomografia Computadorizada por Raios X , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Coração/diagnóstico por imagem , Idoso de 80 Anos ou mais , Cardiopatias/diagnóstico por imagem , Síncrotrons
6.
PLoS Pathog ; 18(5): e1010471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512020

RESUMO

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.


Assuntos
COVID-19 , Interferon Tipo I , Infecções por Orthomyxoviridae , Humanos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Proteólise
7.
Pediatr Res ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341941

RESUMO

BACKGROUND: Biliary atresia (BA) is a rare condition of unknown origin in newborns with jaundice. In BA bile ducts are non-functional, causing neonatal cholestasis and following liver fibrosis and failure. METHODS: This retrospective study included liver biopsies of 14 infants with BA aged [mean ± SD] 63 ± 23 days. Patients were grouped according to the clinical course (jaundice-free vs recurrent jaundice vs required liver transplantation or liver fibrosis (Ishak fibrosis score)) and followed for 1.61-5.64 years (mean 4.03). Transcriptome profiles were assessed using a panel of 768 fibrosis-specific genes, reanalyzed via qRT-PCR, and confirmed via immunostaining. Plasma from an additional 30 BA infants and 10 age-matched controls were used for amyloid precursor protein (APP) quantification by ELISA. RESULTS: Different clinical outcome groups showed a homogeneous mRNA expression. Altered amyloid-metabolism-related gene expression was found between cases with Ishak fibrosis score greater than 4. Immunostaining confirmed a distinct presence of APP in the livers of all BA subjects. APP plasma levels were higher in BA than in age-matched controls and correlated with the histological fibrosis grade. CONCLUSIONS: These results suggest that amyloidosis may contribute to BA and liver fibrosis, indicating that APP could serve as a potential liquid biomarker for these conditions. IMPACT: Biliary atresia patients with higher fibrosis scores according to Ishak have higher hepatic expression of amyloid-related genes while amyloid precursor protein accumulates in the liver and increases in the circulation. After a recent study revealed beta-amyloid deposition as a mechanism potentially involved in biliary atresia, we were able to correlate amyloid-metabolism-related transcript levels as well as amyloid precursor protein tissue and plasma levels with the degree of hepatic fibrosis. These findings suggest that amyloid precursor protein is a fibrosis marker in infants with biliary atresia, reinforcing the role of amyloid metabolism in the pathogenesis of this serious disease.

8.
J Thromb Thrombolysis ; 57(6): 936-946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853210

RESUMO

Inflammation including immunothrombosis by neutrophil extracellular traps (NETs) has important implications in acute ischemic stroke and can affect reperfusion status, susceptibility to stroke associated infections (SAI) as well as functional clinical outcome. NETs were shown to be prevalent in stroke thrombi and NET associated markers were found in stroke patients' blood. However, little is known whether blood derived NET markers reflect the amount of NETs in thrombi. Conclusions from blood derived markers to thrombus composition might open avenues for novel strategies in diagnostic and therapeutic approaches. We prospectively recruited 166 patients with acute ischemic stroke undergoing mechanical thrombectomy between March 2018 and May 2021. Available thrombi (n = 106) were stained for NET markers DNA-histone-1 complexes and myeloperoxidase (MPO). Cell free DNA (cfDNA), deoxyribonuclease (DNase) activity, MPO-histone complexes and a cytokine-panel were measured before thrombectomy and after seven days. Clinical data, including stroke etiology, reperfusion status, SAI and functional outcome after rehabilitation, were collected of all patients. NET markers were present in all thrombi. At onset the median concentration of cfDNA in blood was 0.19 µg/ml increasing to 0.30 µg/ml at 7 days. Median DNase activity at onset was 4.33 pmol/min/ml increasing to 4.96 pmol/min/ml at 7 days. Within thrombi DNA-histone-1 complexes and MPO correlated with each other (ρ = 0.792; p < 0.001). Moreover, our study provides evidence for an association between the amount of NETs and endogenous DNase activity in blood with amounts of NETs in cerebral thrombi. However, these associations need to be confirmed in larger cohorts, to investigate the potential clinical implications for individualized therapeutic and diagnostic approaches in acute ischemic stroke.


Assuntos
Biomarcadores , Armadilhas Extracelulares , AVC Isquêmico , Humanos , Armadilhas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Feminino , Idoso , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Pessoa de Meia-Idade , Estudos Prospectivos , Peroxidase/sangue , Idoso de 80 Anos ou mais , Ácidos Nucleicos Livres/sangue , Trombectomia , Trombose/sangue , Trombose/diagnóstico , Neutrófilos/metabolismo
9.
Radiology ; 307(1): e221145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537894

RESUMO

Background Interstitial lung abnormalities (ILAs) reflect imaging features on lung CT scans that are compatible with (early) interstitial lung disease. Despite accumulating evidence regarding the incidence, risk factors, and prognosis of ILAs, the histopathologic correlates of ILAs remain elusive. Purpose To determine the correlation between radiologic and histopathologic findings in CT-defined ILAs in human lung explants. Materials and Methods Explanted lungs or lobes from participants with radiologically documented ILAs were prospectively collected from 2010 to 2021. These specimens were air-inflated, frozen, and scanned with CT and micro-CT (spatial resolution of 0.7 mm and 90 µm, respectively). Subsequently, the lungs were cut and sampled with core biopsies. At least five samples per lung underwent micro-CT and subsequent histopathologic assessment with semiquantitative remodeling scorings. Based on area-specific radiologic scoring, the association between radiologic and histopathologic findings was assessed. Results Eight lung explants from six donors (median age at explantation, 71 years [range, 60-83 years]; four men) were included (unused donor lungs, n = 4; pre-emptive lobectomy for oncologic indications, n = 2). Ex vivo CT demonstrated ground-glass opacification, reticulation, and bronchiectasis. Micro-CT and histopathologic examination demonstrated that lung abnormalities were frequently paraseptal and associated with fibrosis and lymphocytic inflammation. The histopathologic results showed varying degrees of fibrosis in areas that appeared normal on CT scans. Regions of reticulation on CT scans generally had greater fibrosis at histopathologic analysis. Vasculopathy and bronchiectasis were also often present at histopathologic examination of lungs with ILAs. Fully developed fibroblastic foci were rarely observed. Conclusion This study demonstrated direct histologic correlates of CT-defined interstitial lung abnormalities. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Jeudy in this issue.


Assuntos
Bronquiectasia , Doenças Pulmonares Intersticiais , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pulmão/diagnóstico por imagem , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Fibrose , Microtomografia por Raio-X
10.
Am J Pathol ; 192(2): 239-253, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767811

RESUMO

Human precision-cut lung slices (PCLS) have proven to be an invaluable tool for numerous toxicologic, pharmacologic, and immunologic studies. Although a cultivation period of <1 week is sufficient for most studies, modeling of complex disease mechanisms and investigating effects of long-term exposure to certain substances require cultivation periods that are much longer. So far, data regarding tissue integrity of long-term cultivated PCLS are incomplete. More than 1500 human PCLS from 16 different donors were cultivated under standardized, serum-free conditions for up to 28 days and the viability, tissue integrity, and the transcriptome was assessed in great detail. Even though viability of PCLS was well preserved during long-term cultivation, a continuous loss of cells was observed. Although the bronchial epithelium was well preserved throughout cultivation, the alveolar integrity was preserved for about 2 weeks, and the vasculatory system experienced significant loss of integrity within the first week. Furthermore, ciliary beat in the small airways gradually decreased after 1 week. Interestingly, keratinizing squamous metaplasia of the alveolar epithelium with significantly increasing manifestation were found over time. Transcriptome analysis revealed a significantly increased immune response and significantly decreased metabolic activity within the first 24 hours after PCLS generation. Overall, this study provides a comprehensive overview of histomorphologic and pathologic changes during long-term cultivation of PCLS.


Assuntos
Pulmão/metabolismo , Adulto , Idoso , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fatores de Tempo
11.
Am J Pathol ; 192(8): 1110-1121, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649494

RESUMO

Alveolar capillary dysplasia (ACD) is a rare lung developmental disorder leading to persistent pulmonary arterial hypertension and fatal outcomes in newborns. The current study analyzed the microvascular morphology and the underlying molecular background of ACD. One ACD group (n = 7), one pulmonary arterial hypertension group (n = 20), and one healthy con1trol group (n = 16) were generated. Samples of histologically confirmed ACD were examined by exome sequencing and array-based comparative genomic hybridization. Vascular morphology was analyzed using scanning electron microscopy of microvascular corrosion casts. Gene expression and biological pathways were analyzed using two panels on inflammation/kinase-specific genes and a comparison analysis tool. Compartment-specific protein expression was analyzed using immunostaining. In ACD, there was an altered capillary network, a high prevalence of intussusceptive angiogenesis, and increased activity of C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor 1α (HIF1A), and angiopoietin signaling pathways compared with pulmonary arterial hypertension/healthy controls. Histologically, there was a markedly increased prevalence of endothelial tyrosine kinase receptor (TEK/TIE2)+ macrophages in ACD, compared with the other groups, whereas the CXCR4 ligand CXCL12 and HIF1A showed high expression in all groups. ACD is characterized by dysfunctional capillaries and a high prevalence of intussusceptive angiogenesis. The results indicate that endothelial CXCR4, HIF1A, and angiopoietin signaling as well as TIE2+ macrophages are crucial for the induction of intussusceptive angiogenesis and vascular remodeling. Future studies should address the use of anti-angiogenic agents in ACD, where TIE2 appears as a promising target.


Assuntos
Síndrome da Persistência do Padrão de Circulação Fetal , Hipertensão Arterial Pulmonar , Angiopoietinas , Hibridização Genômica Comparativa , Humanos , Recém-Nascido , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Alvéolos Pulmonares/anormalidades
12.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768808

RESUMO

PiZZ (Glu342Lys) α1-antitrypsin deficiency (AATD) is characterized by intrahepatic AAT polymerization and is a risk factor for liver disease development in children. The majority of PiZZ children are disease free, hence this mutation alone is not sufficient to cause the disease. We investigated Z-AAT polymers and the expression of fibrosis-related genes in liver tissues of PiZZ children with different clinical courses. Liver biopsies obtained during 1979-2010 at the Department of Paediatrics, Karolinska University Hospital, Sweden, were subjected to histological re-evaluation, immunohistochemistry and NanoString-based transcriptome profiling using a panel of 760 fibrosis plus 8 bile acid-related genes. Subjects were divided into three groups based on clinical outcomes: NCH (neonatal cholestasis, favourable outcome, n = 5), NCC (neonatal cholestasis, early cirrhosis and liver transplantation, n = 4), and NNCH (no neonatal cholestasis, favourable outcome, n = 5, six biopsies). Hepatocytes containing Z-AAT polymers were abundant in all groups whereas NCC showed higher expression of genes related to liver fibrosis/cirrhosis and lower expression of genes related to lipid, aldehyde/ketone, and bile acid metabolism. Z-AAT accumulation per se cannot explain the clinical outcomes of PiZZ children; however, changes in the expression of specific genes and pathways involved in lipid, fatty acid, and steroid metabolism appear to reflect the degree of liver injury.


Assuntos
Colestase , Deficiência de alfa 1-Antitripsina , Humanos , Criança , Recém-Nascido , Deficiência de alfa 1-Antitripsina/patologia , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Colestase/metabolismo , Biópsia , Progressão da Doença , Lipídeos
13.
Am J Physiol Heart Circ Physiol ; 323(6): H1352-H1364, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399384

RESUMO

Perturbed vitamin-A metabolism is associated with type 2 diabetes and mitochondrial dysfunction that are pathophysiologically linked to the development of diabetic cardiomyopathy (DCM). However, the mechanism, by which vitamin A might regulate mitochondrial energetics in DCM has previously not been explored. To test the hypothesis that vitamin-A deficiency accelerates the onset of cardiomyopathy in diet-induced obesity (DIO), we subjected mice with lecithin retinol acyltransferase (Lrat) germline deletion, which exhibit impaired vitamin-A stores, to vitamin A-deficient high-fat diet (HFD) feeding. Wild-type mice fed with a vitamin A-sufficient HFD served as controls. Cardiac structure, contractile function, and mitochondrial respiratory capacity were preserved despite vitamin-A deficiency following 20 wk of HFD feeding. Gene profiling by RNA sequencing revealed that vitamin A is required for the expression of genes involved in cardiac fatty acid oxidation, glycolysis, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation in DIO as expression of these genes was relatively preserved under vitamin A-sufficient HFD conditions. Together, these data identify a transcriptional program, by which vitamin A preserves cardiac energetic gene expression in DIO that might attenuate subsequent onset of mitochondrial and contractile dysfunction.NEW & NOTEWORTHY The relationship between vitamin-A status and the pathogenesis of diabetic cardiomyopathy has not been studied in detail. We assessed cardiac mitochondrial respiratory capacity, contractile function, and gene expression by RNA sequencing in a murine model of combined vitamin-A deficiency and diet-induced obesity. Our study identifies a role for vitamin A in preserving cardiac energetic gene expression that might attenuate subsequent development of mitochondrial and contractile dysfunction in diet-induced obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Camundongos , Animais , Vitamina A , Modelos Animais de Doenças , Dieta , Obesidade/genética , Expressão Gênica , Vitaminas
14.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163504

RESUMO

(1) Background: In COVID-19 survivors there is an increased prevalence of pulmonary fibrosis of which the underlying molecular mechanisms are poorly understood; (2) Methods: In this multicentric study, n = 12 patients who succumbed to COVID-19 due to progressive respiratory failure were assigned to an early and late group (death within ≤7 and >7 days of hospitalization, respectively) and compared to n = 11 healthy controls; mRNA and protein expression as well as biological pathway analysis were performed to gain insights into the evolution of pulmonary fibrogenesis in COVID-19; (3) Results: Median duration of hospitalization until death was 3 (IQR25-75, 3-3.75) and 14 (12.5-14) days in the early and late group, respectively. Fifty-eight out of 770 analyzed genes showed a significantly altered expression signature in COVID-19 compared to controls in a time-dependent manner. The entire study group showed an increased expression of BST2 and IL1R1, independent of hospitalization time. In the early group there was increased activity of inflammation-related genes and pathways, while fibrosis-related genes (particularly PDGFRB) and pathways dominated in the late group; (4) Conclusions: After the first week of hospitalization, there is a shift from pro-inflammatory to fibrogenic activity in severe COVID-19. IL1R1 and PDGFRB may serve as potential therapeutic targets in future studies.


Assuntos
COVID-19/genética , COVID-19/metabolismo , Fibrose Pulmonar/patologia , Idoso , COVID-19/mortalidade , Feminino , Mortalidade Hospitalar/tendências , Hospitalização , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fibrose Pulmonar/metabolismo , Insuficiência Respiratória/patologia , SARS-CoV-2/patogenicidade
15.
Pathologe ; 42(2): 164-171, 2021 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-33560456

RESUMO

Viral respiratory diseases constitute the most common reasons for hospitalization with more than half of all acute illnesses worldwide. Progressive respiratory failure with pronounced diffuse alveolar damage has been identified as the primary cause of death in COVID-19. COVID-19 pneumonia shares common histopathological hallmarks with influenza (H1N1)-related ARDS, like diffuse alveolar damage (DAD) with edema, hemorrhage, and intra-alveolar fibrin deposition. The lungs with COVID-19 pneumonia revealed perivascular inflammation, an endothelial injury, microangiopathy, and an aberrant blood vessel neoformation by intussusceptive angiogenesis. While this pronounced angiocentric inflammation is likely be found - to varying degrees - in numerous other organs, e.g., the heart, COVID-19 is hypothesized to be not just a pulmonary, but rather a systemic "vascular disease."


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Coração , Humanos , Pulmão , SARS-CoV-2
16.
Eur Respir J ; 56(1)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108050

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare, cystic lung disease with progressive pulmonary function loss caused by progressively proliferating LAM cells. The degree of airway obstruction has not been well investigated within the pathogenesis of LAM.Using a combination of ex vivo computed tomography (CT), microCT and histology, the site and nature of airway obstruction in LAM explant lungs was compared with matched control lungs (n=5 each). The total number of airways per generation, total airway counts, terminal bronchioles number and surface density were compared in LAM versus control.Ex vivo CT analysis demonstrated a reduced number of airways from generation 7 on (p<0.0001) in LAM compared with control, whereas whole-lung microCT analysis confirmed the three- to four-fold reduction in the number of airways. Specimen microCT analysis further demonstrated a four-fold decrease in the number of terminal bronchioles (p=0.0079) and a decreased surface density (p=0.0079). Serial microCT and histology images directly showed the loss of functional airways by collapse of airways on the cysts and filling of the airway by exudate.LAM lungs show a three- to four-fold decrease in the number of (small) airways, caused by cystic destruction which is the likely culprit for the progressive loss of pulmonary function.


Assuntos
Obstrução das Vias Respiratórias , Neoplasias Pulmonares , Linfangioleiomiomatose , Obstrução das Vias Respiratórias/diagnóstico por imagem , Obstrução das Vias Respiratórias/etiologia , Bronquíolos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico por imagem , Linfangioleiomiomatose/complicações , Linfangioleiomiomatose/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA