Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 220(Pt 19): 3545-3555, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784683

RESUMO

The need for long-axis support is widespread among non-aquatic vertebrates and may be particularly acute for arboreal snakes when many vertebrae span sizable gaps between branches with diverse orientations. Hence, we used brown tree snakes (Boiga irregularis) bridging gaps to test how three-dimensional trajectories affected muscle activity and whether these motor patterns differed from those for the locomotion of terrestrial snakes and movements of other vertebrates. We used five trajectories: pitch angles of 90, 0 and -90 deg (downward) when yaw=0 deg, and 90 deg yaw angles to the left and right when pitch=0 deg. We recorded movement and electromyograms from the three largest epaxial muscles, which from dorsal to ventral are the semispinalis-spinalis (SSP), longissimus dorsi (LD) and iliocostalis (IL). Overall, the SSP had extensive bilateral activity, which resembled the motor pattern during the dorsiflexion of sidewinding snakes. Unlike any previously described terrestrial snake locomotion, bilateral activity of the LD and IL was also common during gap bridging. The largest amounts of muscle activity usually occurred for horizontal gaps, and muscle activity decreased markedly as soon as the snake's head touched the far edge of the gap. Snakes had the least amount of muscle activity for pitch=-90 deg. While turning sideways, muscles on the convex side had less activity when turning compared with the concave side. Hence, the orientation relative to gravity profoundly affected muscle activity during gap bridging, and these complex three-dimensional movements involved several previously undescribed variants of axial motor pattern.


Assuntos
Colubridae/fisiologia , Locomoção , Músculo Esquelético/fisiologia , Animais , Eletromiografia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA