Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Dis ; 104(1): 71-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31697221

RESUMO

The ToxA-Tsn1 system is an example of an inverse gene-for-gene relationship. The gene ToxA encodes a host-selective toxin (HST) which functions as a necrotrophic effector and is often responsible for the virulence of the pathogen. The genomes of several fungal pathogens (e.g., Pyrenophora tritici-repentis, Parastagonospora nodorum, and Bipolaris sorokiniana) have been shown to carry the ToxA gene. Tsn1 is a sensitivity gene in the host, whose presence generally helps a ToxA-positive pathogen to cause spot blotch in wheat. Cultivars lacking Tsn1 are generally resistant to spot blotch; this resistance is attributed to a number of other known genes which impart resistance in the absence of Tsn1. In the present study, 110 isolates of B. sorokiniana strains, collected from the ME5A and ME4C megaenvironments of India, were screened for the presence of the ToxA gene; 77 (70%) were found to be ToxA positive. Similarly, 220 Indian wheat cultivars were screened for the presence of the Tsn1 gene; 81 (36.8%) were found to be Tsn1 positive. When 20 wheat cultivars (11 with Tsn1 and 9 with tsn1) were inoculated with ToxA-positive isolates, seedlings of only those carrying the Tsn1 allele (not tsn1) developed necrotic spots surrounded by a chlorotic halo. No such distinction between Tsn1 and tsn1 carriers was observed when adult plants were inoculated. This study suggests that the absence of Tsn1 facilitated resistance against spot blotch of wheat. Therefore, the selection of wheat genotypes for the absence of the Tsn1 allele can improve resistance to spot blotch.


Assuntos
Ascomicetos , Interações Hospedeiro-Patógeno , Triticum , Virulência , Ascomicetos/genética , Ascomicetos/patogenicidade , Resistência à Doença/genética , Genes Fúngicos/genética , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Índia , Triticum/genética , Triticum/microbiologia , Virulência/genética
2.
Theor Appl Genet ; 132(9): 2463-2483, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321476

RESUMO

KEY MESSAGE: The review outlines past failures, present status and future prospects of hybrid wheat, and includes information on CMS/CHA/transgenic approaches for male sterility, heterotic groups and cost-effective hybrid seed production. Hybrid varieties give increased yield and improved grain quality in both cross- and self-pollinated crops. However, hybrid varieties in self-pollinated crops (particularly cereals) have not been very successful, except for hybrid rice in China. In case of hybrid wheat, despite the earlier failures, renewed efforts in recent years have been made and hybrid varieties with desirable attributes have been produced and marketed in some European countries. This review builds upon previous reviews, with a new outlook and improved knowledge base, not covered in earlier reviews. New technologies have been described, which include the Hordeum chilense-based CMS-fertility restorer system, chromosomal XYZ-4E-ms system and the following transgenic technologies: (1) conditional male sterility involving use of tapetum-specific expression of a gene that converts a pro-toxin into a phytotoxin causing male sterility; (2) barnase-barstar SeedLink system of Bayer CropScience; (3) split-barnase system that obviates the need of a barstar-based male restorer line; and (4) seed production technology of DuPont-Pioneer that makes use of transgenes in production of male-sterile lines, but gives hybrid seed with no transgenes. This review also includes a brief account of studies for discovery of heterotic QTL, genomic prediction of hybrid vigour and the development of heterotic groups/patterns and their importance in hybrid wheat production. The problem of high cost of hybrid seed due to required high seed rate in wheat relative to hybrid rice has also been addressed. The review concludes with a brief account of the current efforts and future possibilities in making hybrid wheat a commercial success.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Vigor Híbrido , Melhoramento Vegetal , Infertilidade das Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Triticum/fisiologia
3.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558200

RESUMO

Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT's Agua Fria station for three consecutive years, from the 2012⁻2013 to 2014⁻2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7⁻27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas/genética , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
4.
Theor Appl Genet ; 127(7): 1643-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24865507

RESUMO

KEY MESSAGE: Ten QTL underlying the accumulation of Zn and Fe in the grain were mapped in a set of RILs bred from the cross Triticum spelta × T. aestivum . Five of these loci (two for Zn and three for Fe) were consistently detected across seven environments. The genetic basis of accumulation in the grain of Zn and Fe was investigated via QTL mapping in a recombinant inbred line (RIL) population bred from a cross between Triticum spelta and T. aestivum. The concentration of the two elements was measured from grain produced in three locations over two consecutive cropping seasons and from a greenhouse trial. The range in Zn and Fe concentration across the RILs was, respectively, 18.8-73.5 and 25.3-59.5 ppm, and the concentrations of the two elements were positively correlated with one another (rp =+0.79). Ten QTL (five each for Zn and Fe accumulation) were detected, mapping to seven different chromosomes. The chromosome 2B and 6A grain Zn QTL were consistently expressed across environments. The proportion of the phenotype explained (PVE) by QZn.bhu-2B was >16 %, and the locus was closely linked to the SNP marker 1101425|F|0, while QZn.bhu-6A (7.0 % PVE) was closely linked to DArT marker 3026160|F|0. Of the five Fe QTL detected, three, all mapping to chromosome 1A were detected in all seven environments. The PVE for QFe.bhu-3B was 26.0 %.


Assuntos
Mapeamento Cromossômico , Ferro/análise , Locos de Características Quantitativas , Triticum/genética , Zinco/análise , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas , Ligação Genética , Variação Genética , Fenótipo , Triticum/química
5.
Plant Genome ; 17(1): e20425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221748

RESUMO

Spot blotch caused by Bipolaris sorokiniana ((Sacc.) Shoemaker) (teleomorph: Cochliobolus sativus [Ito and Kuribayashi] Drechsler ex Dastur) is an economically important disease of warm and humid regions. The present study focused on identifying resistant genotypes and single-nucleotide polymorphism (SNP) markers associated with spot blotch resistance in a panel of 174 bread spring wheat lines using field screening and genome-wide association mapping strategies. Field experiments were conducted in Agua Fria, Mexico, during the 2019-2020 and 2020-2021 cropping seasons. A wide range of phenotypic variation was observed among genotypes tested during both years. Twenty SNP markers showed significant association with spot blotch resistance on 15 chromosomes, namely, 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7B. Of these, two consistently significant SNPs on 5A, TA003225-0566 and TA003225-1427, may represent a new resistance quantitative trait loci. Further, in the proximity of Tsn1 on 5B, AX-94435238 was the most stable and consistent in both years. The identified genomic regions could be deployed to develop spot blotch-resistant genotypes, particularly in the spot blotch-vulnerable wheat growing areas.


Assuntos
Bipolaris , Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estações do Ano , Fenótipo , Resistência à Doença/genética , Doenças das Plantas/genética , Genótipo
6.
Front Plant Sci ; 14: 1023824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063191

RESUMO

In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.

7.
Front Plant Sci ; 14: 1223959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881616

RESUMO

The leaf blight diseases, Septoria nodorum blotch (SNB), and tan spot (TS) are emerging due to changing climatic conditions in the northern parts of India. We screened 296 bread wheat cultivars released in India over the past 20 years for seedling resistance against SNB (three experiments) and TS (two experiments). According to a genome-wide association study, six QTLs on chromosome arms 1BL, 2AS, 5BL, and 6BL were particularly significant for SNB across all three years, of which Q.CIM.snb.1BL, Q.CIM.snb.2AS1, Q.CIM.snb.2AS.2, and Q.CIM.snb.6BL appeared novel. In contrast, those on 5BS and 5BL may correspond to Snn3 and Tsn1, respectively. The allelic combination of tsn1/snn3 conferred resistance to SNB, whereas that of Tsn1/Snn3 conferred high susceptibility. As for TS, Tsn1 was the only stably significant locus identified in this panel. Several varieties like PBW 771, DBW 277, and HD 3319, were identified as highly resistant to both diseases that can be used in future wheat improvement programs as resistant donors.

8.
Plants (Basel) ; 12(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005757

RESUMO

Powdery mildew (PM), caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), significantly threatens global bread wheat production. Although the use of resistant cultivars is an effective strategy for managing PM, currently available wheat cultivars lack sufficient levels of resistance. To tackle this challenge, we conducted a comprehensive genome-wide association study (GWAS) using a diverse panel of 286 bread wheat genotypes. Over three consecutive years (2020-2021, 2021-2022, and 2022-2023), these genotypes were extensively evaluated for PM severity under field conditions following inoculation with virulent Bgt isolates. The panel was previously genotyped using the Illumina 90K Infinium iSelect assay to obtain genome-wide single-nucleotide polymorphism (SNP) marker coverage. By applying FarmCPU, a multilocus mixed model, we identified a total of 113 marker-trait associations (MTAs) located on chromosomes 1A, 1B, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6B, 7A, and 7B at a significance level of p ≤ 0.001. Notably, four novel MTAs on chromosome 6B were consistently detected in 2020-2021 and 2021-2022. Furthermore, within the confidence intervals of the identified SNPs, we identified 96 candidate genes belonging to different proteins including 12 disease resistance/host-pathogen interaction-related protein families. Among these, protein kinases, leucine-rich repeats, and zinc finger proteins were of particular interest due to their potential roles in PM resistance. These identified loci can serve as targets for breeding programs aimed at developing disease-resistant wheat cultivars.

9.
Front Plant Sci ; 14: 1166439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251775

RESUMO

Understanding the genetic architecture of drought stress tolerance in bread wheat at seedling and reproductive stages is crucial for developing drought-tolerant varieties. In the present study, 192 diverse wheat genotypes, a subset from the Wheat Associated Mapping Initiative (WAMI) panel, were evaluated at the seedling stage in a hydroponics system for chlorophyll content (CL), shoot length (SLT), shoot weight (SWT), root length (RLT), and root weight (RWT) under both drought and optimum conditions. Following that, a genome-wide association study (GWAS) was carried out using the phenotypic data recorded during the hydroponics experiment as well as data available from previously conducted multi-location field trials under optimal and drought stress conditions. The panel had previously been genotyped using the Infinium iSelect 90K SNP array with 26,814 polymorphic markers. Using single as well as multi-locus models, GWAS identified 94 significant marker-trait associations (MTAs) or SNPs associated with traits recorded at the seedling stage and 451 for traits recorded at the reproductive stage. The significant SNPs included several novel, significant, and promising MTAs for different traits. The average LD decay distance for the whole genome was approximately 0.48 Mbp, ranging from 0.07 Mbp (chromosome 6D) to 4.14 Mbp (chromosome 2A). Furthermore, several promising SNPs revealed significant differences among haplotypes for traits such as RLT, RWT, SLT, SWT, and GY under drought stress. Functional annotation and in silico expression analysis revealed important putative candidate genes underlying the identified stable genomic regions such as protein kinases, O-methyltransferases, GroES-like superfamily proteins, NAD-dependent dehydratases, etc. The findings of the present study may be useful for improving yield potential, and stability under drought stress conditions.

10.
Plants (Basel) ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986959

RESUMO

Wheat is a major staple food crop for food security in India and South Asia. The current rate (0.8-1.2%) of genetic gain in wheat is significantly shorter than the 2.4% needed to meet future demand. The changing climate and increased yield loss due to factors such as terminal heat stress necessitate the need for climate-resilient practices to sustain wheat production. At ICAR-Indian Institute of Wheat and Barley Research in Karnal, Haryana, India, a new High Yield Potential Trial (HYPT) was conceptualized and subsequently conducted at six locations in the highly productive North Western Plain Zone (NWPZ). An attempt was made to harness higher wheat yields through the best pipeline genotypes suitable for early sowing and modified agronomic practices to explore the feasibility of a new approach that is profitable to farmers. The modified agronomic practices included like early sowing, application of 150% recommended dose of fertilizers, and two sprays of growth regulators (Chlormaquate chloride and Tebuconazole) to prevent lodging. The mean yield in the HYPT was 19.4% superior compared to the best trials conducted during the normal sowing time. A highly positive and significant correlation of grain yield with grain filling duration (0.51), biomass (0.73), harvest index (0.75), normalized difference vegetation Index (0.27), chlorophyll content index (0.32), and 1000-grain weight (0.62) was observed. An increased return of USD 201.95/ha was realized in the HYPT when compared to normal sowing conditions. This study proves that new integrated practices have the potential to provide the best profitable yields in wheat in the context of climate change.

11.
Theor Appl Genet ; 125(3): 561-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476874

RESUMO

High temperature (>30 °C) at the time of grain filling is one of the major causes of yield reduction in wheat in many parts of the world, especially in tropical countries. To identify quantitative trait loci (QTL) for heat tolerance under terminal heat stress, a set of 148 recombinant inbred lines was developed by crossing a heat-tolerant hexaploid wheat (Triticum aestivum L.) cultivar (NW1014) and a heat-susceptible (HUW468) cultivar. The F(5), F(6), and F(7) generations were evaluated in two different sowing dates under field conditions for 2 years. Using the trait values from controlled and stressed trials, four different traits (1) heat susceptibility index (HSI) of thousand grain weight (HSITGW); (2) HSI of grain fill duration (HSIGFD); (3) HSI of grain yield (HSIYLD); and (4) canopy temperature depression (CTD) were used to determine heat tolerance. Days to maturity was also investigated. A linkage map comprising 160 simple sequence repeat markers was prepared covering the whole genome of wheat. Using composite interval mapping, significant genomic regions on 2B, 7B and 7D were found to be associated with heat tolerance. Of these, two (2B and 7B) were co-localized QTL and explained more than 15 % phenotypic variation for HSITGW, HSIGFD and CTD. In pooled analysis over three trials, QTL explained phenotypic variation ranging from 9.78 to 20.34 %. No QTL × trial interaction was detected for the identified QTL. The three major QTL obtained can be used in marker-assisted selection for heat stress in wheat.


Assuntos
Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Genoma de Planta , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/isolamento & purificação , Ligação Genética , Genótipo , Temperatura Alta , Repetições de Microssatélites , Fenótipo
12.
Front Genet ; 13: 859676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450212

RESUMO

The pathogenic fungus, Bipolaris sorokiniana, that causes spot blotch (SB) disease of wheat, is a major production constraint in the Eastern Gangetic Plains of South Asia and other warm, humid regions of the world. A recombinant inbred line population was developed and phenotyped at three SB-prone locations in India. The single nucleotide polymorphism (SNP) for SB resistance was identified using a bulked segregant RNA-Seq-based approach, referred to as "BSR-Seq." Transcriptome sequencing of the resistant parent (YS#24), the susceptible parent (YS#58), and their resistant and susceptible bulks yielded a total of 429.67 million raw reads. The bulk frequency ratio (BFR) of SNPs between the resistant and susceptible bulks was estimated, and selection of SNPs linked to resistance was done using sixfold enrichments in the corresponding bulks (BFR >6). With additional filtering criteria, the number of transcripts was further reduced to 506 with 1055 putative polymorphic SNPs distributed on 21 chromosomes of wheat. Based on SNP enrichment on chromosomal loci, five transcripts were found to be associated with SB resistance. Among the five SB resistance-associated transcripts, four were distributed on the 5B chromosome with putative 52 SNPs, whereas one transcript with eight SNPs was present on chromosome 3B. The SNPs linked to the trait were exposed to a tetra-primer ARMS-PCR assay, and an SNP-based allele-specific marker was identified for SB resistance. The in silico study of these five transcripts showed homology with pathogenesis-related genes; the metabolic pathway also exhibits similar results, suggesting their role in the plant defense mechanism.

13.
Front Plant Sci ; 13: 1036064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743576

RESUMO

Genetic architecture of resistance to spot blotch in wheat was examined using a Genome-Wide Association Study (GWAS) involving an association panel comprising 303 diverse genotypes. The association panel was evaluated at two different locations in India including Banaras Hindu University (BHU), Varanasi (Uttar Pradesh), and Borlaug Institute for South Asia (BISA), Pusa, Samastipur (Bihar) for two consecutive years (2017-2018 and 2018-2019), thus making four environments (E1, BHU 2017-18; E2, BHU 2018-19; E3, PUSA, 2017-18; E4, PUSA, 2018-19). The panel was genotyped for 12,196 SNPs based on DArT-seq (outsourced to DArT Ltd by CIMMYT); these SNPs included 5,400 SNPs, which could not be assigned to individual chromosomes and were therefore, described as unassigned by the vendor. Phenotypic data was recorded on the following three disease-related traits: (i) Area Under Disease Progress Curve (AUDPC), (ii) Incubation Period (IP), and (iii) Lesion Number (LN). GWAS was conducted using each of five different models, which included two single-locus models (CMLM and SUPER) and three multi-locus models (MLMM, FarmCPU, and BLINK). This exercise gave 306 MTAs, but only 89 MTAs (33 for AUDPC, 30 for IP and 26 for LN) including a solitary MTA detected using all the five models and 88 identified using four of the five models (barring SUPER) were considered to be important. These were used for further analysis, which included identification of candidate genes (CGs) and their annotation. A majority of these MTAs were novel. Only 70 of the 89 MTAs were assigned to individual chromosomes; the remaining 19 MTAs belonged to unassigned SNPs, for which chromosomes were not known. Seven MTAs were selected on the basis of minimum P value, number of models, number of environments and location on chromosomes with respect to QTLs reported earlier. These 7 MTAs, which included five main effect MTAs and two for epistatic interactions, were considered to be important for marker-assisted selection (MAS). The present study thus improved our understanding of the genetics of resistance against spot blotch in wheat and provided seven MTAs, which may be used for MAS after due validation.

14.
Front Plant Sci ; 13: 920682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873987

RESUMO

Spring bread wheat adaptation to diverse environments is supported by various traits such as phenology and plant architecture. A large-scale genome-wide association study (GWAS) was designed to investigate and dissect the genetic architecture of phenology affecting adaptation. It used 48 datasets from 4,680 spring wheat lines. For 8 years (2014-2021), these lines were evaluated for days to heading (DH) and maturity (DM) at three sites: Jabalpur, Ludhiana, and Samastipur (Pusa), which represent the three major Indian wheat-producing zones: the Central Zone (CZ), North-Western Plain Zone (NWPZ), and North-Eastern Plain Zone (NEPZ), respectively. Ludhiana had the highest mean DH of 103.8 days and DM of 148.6 days, whereas Jabalpur had the lowest mean DH of 77.7 days and DM of 121.6 days. We identified 119 markers significantly associated with DH and DM on chromosomes 5B (76), 2B (18), 7D (10), 4D (8), 5A (1), 6B (4), 7B (1), and 3D (1). Our results clearly indicated the importance of the photoperiod-associated gene (Ppd-B1) for adaptation to the NWPZ and the Vrn-B1 gene for adaptation to the NEPZ and CZ. A maximum variation of 21.1 and 14% was explained by markers 2B_56134146 and 5B_574145576 linked to the Ppd-B1 and Vrn-B1 genes, respectively, indicating their significant role in regulating DH and DM. The results provide important insights into the genomic regions associated with the two phenological traits that influence adaptation to the major wheat-producing zones in India.

15.
Plants (Basel) ; 11(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365440

RESUMO

Wheat is one of the most widely grown and consumed food crops in the world. Spot blotch and terminal heat stress are the two significant constraints mainly in the Indo-Gangetic plains of South Asia. The study was undertaken using 185 recombinant lines (RILs) derived from the interspecific hybridization of 'Triticum aestivum (HUW234) × T. spelta (H+26)' to reveal genomic regions associated with tolerance to combined stress to spot blotch and terminal heat. Different physiological (NDVI, canopy temperature, leaf chlorophyll) and grain traits (TGW, grain size) were observed under stressed (spot blotch, terminal heat) and non-stressed environments. The mean maturity duration of RILs under combined stress was reduced by 12 days, whereas the normalized difference vegetation index (NDVI) was 46.03%. Similarly, the grain size was depleted under combined stress by 32.23% and thousand kernel weight (TKW) by 27.56% due to spot blotch and terminal heat stress, respectively. The genetic analysis using 6734 SNP markers identified 37 significant loci for the area under the disease progress curve (AUDPC) and NDVI. The genome-wide functional annotation of the SNP markers revealed gene functions such as plant chitinases, NB-ARC and NBS-LRR, and the peroxidase superfamily Cytochrome P450 have a positive role in the resistance through a hypersensitive response. Zinc finger domains, cysteine protease coding gene, F-box protein, ubiquitin, and associated proteins, play a substantial role in the combined stress of spot blotch and terminal heat in bread wheat, according to genomic domains ascribed to them. The study also highlights T. speltoides as a source of resistance to spot blotch and terminal heat tolerance.

16.
Front Plant Sci ; 13: 881965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783930

RESUMO

Wheat (Triticum aestivum L.) is one of the major staples in Nepal providing the bulk of food calories and at least 30% of Fe and Zn intake and 20% of dietary energy and protein consumption; thus, it is essential to improve its nutritional quality. To select high-yielding genotypes with elevated grain zinc and iron concentration, the sixth, seventh, eighth, and ninth HarvestPlus Yield Trials (HPYTs) were conducted across diverse locations in Nepal for four consecutive years: 2015-16, 2016-17, 2017-18, and 2018-19, using 47 biofortified and 3 non-biofortified CIMMYT-bred, bread wheat genotypes: Baj#1, Kachu#1, and WK1204 (local check). Genotypic and spatial variations were found in agro-morphological traits; grain yield and its components; and the grain zinc and iron concentration of tested genotypes. Grain zinc concentration was highest in Khumaltar and lowest in Kabre. Likewise, grain iron concentration was highest in Doti and lowest in Surkhet. Most of the biofortified genotypes were superior for grain yield and for grain zinc and iron concentration to the non-biofortified checks. Combined analyses across environments showed moderate to high heritability for both Zn (0.48-0.81) and Fe (0.46-0.79) except a low heritability for Fe observed for 7th HPYT (0.15). Grain yield was positively correlated with the number of tillers per m2, while negatively correlated with days to heading and maturity, grain iron, grain weight per spike, and thousand grain weight. The grain zinc and iron concentration were positively correlated, suggesting that the simultaneous improvement of both micronutrients is possible through wheat breeding. Extensive testing of CIMMYT derived high Zn wheat lines in Nepal led to the release of five biofortified wheat varieties in 2020 with superior yield, better disease resistance, and 30-40% increased grain Zn and adaptable to a range of wheat growing regions in the country - from the hotter lowland, or Terai, regions to the dry mid- and high-elevation areas.

17.
Theor Appl Genet ; 123(5): 803-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21671067

RESUMO

Pea rust caused by Uromyces fabae (Pers.) de-Bary is a major problem in warm humid regions causing huge economic losses. A mapping population of 136 F(6:7) recombinant inbred lines (RILs) derived from the cross between pea genotypes, HUVP 1 (susceptible) and FC 1 (resistant) was evaluated in polyhouse as well as under field conditions during two consecutive years. Infection frequency (IF) and area under disease progress curve (AUDPC) were used for evaluation of rust reaction of the RILs. A linkage map was constructed with 57 polymorphic loci selected from 148 simple sequence repeats (SSRs), 3 sequence tagged sites (STS), and 2 random amplified polymorphic (RAPD) markers covering 634 cM of genetic distance on the seven linkage groups of pea with an average interval length of 11.3 cM. Composite interval mapping (CIM) revealed one major (Qruf) and one minor (Qruf1) QTL for rust resistance on LGVII. The LOD (5.2-15.8) peak for Qruf was flanked by SSR markers, AA505 and AA446 (10.8 cM), explaining 22.2-42.4% and 23.5-58.8% of the total phenotypic variation for IF and AUDPC, respectively. The minor QTL was environment-specific, and it was detected only in the polyhouse (LOD values 4.2 and 4.8). It was flanked by SSR markers, AD146 and AA416 (7.3 cM), and explained 11.2-12.4% of the total phenotypic variation. The major QTL Qruf was consistently identified across all the four environments. Therefore, the SSR markers flanking Qruf would be useful for marker-assisted selection for pea rust (U. fabae) resistance.


Assuntos
Basidiomycota/fisiologia , Cromossomos de Plantas , Pisum sativum/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Marcadores Genéticos , Pisum sativum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo Genético , Locos de Características Quantitativas
18.
Front Plant Sci ; 12: 758631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745191

RESUMO

In wheat, a multi-locus genome-wide association study (ML-GWAS) was conducted for the four grain weight-related traits (days to anthesis, grain filling duration, grain number per ear, and grain weight per ear) using data recorded under irrigated (IR) and rain-fed (RF) conditions. Seven stress-related indices were estimated for these four traits: (i) drought resistance index (DI), (ii) geometric mean productivity (GMP), (iii) mean productivity index (MPI), (iv) relative drought index (RDI), (v) stress tolerance index (STI), (vi) yield index, and (vii) yield stability index (YSI). The association panel consisted of a core collection of 320 spring wheat accessions representing 28 countries. The panel was genotyped using 9,627 single nucleotide polymorphisms (SNPs). The genome-wide association (GWA) analysis provided 30 significant marker-trait associations (MTAs), distributed as follows: (i) IR (15 MTAs), (ii) RF (14 MTAs), and (iii) IR+RF (1 MTA). In addition, 153 MTAs were available for the seven stress-related indices. Five MTAs co-localized with previously reported QTLs/MTAs. Candidate genes (CGs) associated with different MTAs were also worked out. Gene ontology (GO) analysis and expression analysis together allowed the selection of the two CGs, which may be involved in response to drought stress. These two CGs included: TraesCS1A02G331000 encoding RNA helicase and TraesCS4B02G051200 encoding microtubule-associated protein 65. The results supplemented the current knowledge on genetics for drought tolerance in wheat. The results may also be used for future wheat breeding programs to develop drought-tolerant wheat cultivars.

19.
PeerJ ; 9: e11593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221720

RESUMO

Genetic diversity and population structure information are crucial for enhancing traits of interest and the development of superlative varieties for commercialization. The present study elucidated the population structure and genetic diversity of 141 advanced wheat breeding lines using single nucleotide polymorphism markers. A total of 14,563 high-quality identified genotyping-by-sequencing (GBS) markers were distributed covering 13.9 GB wheat genome, with a minimum of 1,026 SNPs on the homoeologous group four and a maximum of 2,838 SNPs on group seven. The average minor allele frequency was found 0.233, although the average polymorphism information content (PIC) and heterozygosity were 0.201 and 0.015, respectively. Principal component analyses (PCA) and population structure identified two major groups (sub-populations) based on SNPs information. The results indicated a substantial gene flow/exchange with many migrants (Nm = 86.428) and a considerable genetic diversity (number of different alleles, Na = 1.977; the number of effective alleles, Ne = 1.519; and Shannon's information index, I = 0.477) within the population, illustrating a good source for wheat improvement. The average PIC of 0.201 demonstrates moderate genetic diversity of the present evaluated advanced breeding panel. Analysis of molecular variance (AMOVA) detected 1% and 99% variance between and within subgroups. It is indicative of excessive gene traffic (less genetic differentiation) among the populations. These conclusions deliver important information with the potential to contribute new beneficial alleles using genome-wide association studies (GWAS) and marker-assisted selection to enhance genetic gain in South Asian wheat breeding programs.

20.
Sci Rep ; 11(1): 6017, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727567

RESUMO

Spot blotch and terminal heat are two of the most important stresses for wheat in South Asia. A study was initiated to explore the use of spelt (Triticum spelta) to improve tolerance to these stresses in spring wheat (T. aestivum). We assessed 185 recombinant inbred lines (RILs) from the cross T. spelta (H + 26) × T. aestivum (cv. HUW234), under the individual stresses and their combination. H + 26 showed better tolerance to the single stresses and also their combination; grain yield in RILs was reduced by 21.9%, 27.7% and 39.0% under spot blotch, terminal heat and their combined effect, respectively. However, phenological and plant architectural traits were not affected by spot blotch itself. Multivariate analysis demonstrated a strong negative correlation between spikelet sterility and grain yield under spot blotch, terminal heat and their combination. However, four recombinant lines demonstrated high performance under both stresses and also under their combined stress. The four lines were significantly superior in grain yield and showed significantly lower AUDPC than the better parent. This study demonstrates the potential of spelt wheat in enhancing tolerance to spot blotch and terminal heat stresses. It also provides comprehensive evidence about the expression of yield and phenological traits under these stresses.


Assuntos
Resistência à Doença/genética , Resposta ao Choque Térmico/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Triticum/genética , Ascomicetos/crescimento & desenvolvimento , Ásia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA