Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr HIV Res ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317999

RESUMO

The aim of the present investigation is to identify effective anti-HIV drugs through the in-silico virtual screening of the coumarin pharmacophore with or without substituents. Virtual screening started with target identification through computation docking and interactions, binding affinity through molecular dynamics, and the ADMET profile through the use of various enzymes. The target study suggests that the target is involved in various stages of HIV replication and in determining the ways in which non-nucleoside reverse transcriptase inhibitors (RTIs) influence it. The interaction pattern and simulation study conclude the specific affinity of coumarin pharmacophore to the HIV's reverse transcriptase enzyme, especially 3HVT. Moreover, the amide linkage worked as a synergistic bridge to provide more interaction to the pharmacophore. The initial results led to the determination of 83 virtual amide-like molecules, which were screened through docking and MD studies (100 ns) on the best-suited enzyme HIV's reverse transcriptase enzyme, such as PDB ID "3HVT". The virtual screening study revealed the high affinity of compounds 7d and 7e with the lowest IC50 values of 0.729 and 0.658 µM; moreover, their metabolism pattern study, toxicity, and QED values in a range of 0.31-0.40 support a good drug candidate. The two compounds were also synthesized and characterized for future in vitro and in vivo studies. The in silico-based descriptor of compounds 7d and 7e indicates the potential future and provides the best two molecules and their synthetic route for the development of a more effective drug to combat HIV/AIDS epidemics.

2.
Int J Biol Macromol ; 254(Pt 3): 127465, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866583

RESUMO

Rapid growth in industrialization sectors, the wastewater treatment plants become exhausted and potentially not able to give desirable discharge standards. Many industries discharge the untreated effluent into the water bodies which affects the aquatic diversity and human health. The effective disposal of industrial effluents thus has been an imperative requirement. For decades nanocellulose based materials gained immense attraction towards application in wastewater remediation and emerged out as a new biobased nanomaterial. It is light weighted, cost effective, mechanically strong and easily available. Large surface area, versatile surface functionality, biodegradability, high aspect ratio etc., make them suitable candidate in this field. Majorly cellulose based nanomaterials are used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). This review specifically describes about a variety of extraction methods to produced nanocellulose and also discusses the modification of nanocellulose by adding functionalities in its surface chemistry. We majorly focus on the utilization of nanocellulose based materials in water remediation for the removal of different contaminants such as dyes, heavy metals, oil, microbial colony etc. This review mainly emphasizes in ray of hope towards nanocellulose materials to achieve more advancement in the water remediation fields.


Assuntos
Nanofibras , Nanopartículas , Nanoestruturas , Humanos , Água , Nanoestruturas/química , Nanopartículas/química , Nanofibras/química , Celulose/química
3.
Sci Rep ; 9(1): 11384, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388042

RESUMO

The present study investigates the hydrothermal liquefaction (HTL) of harmful green macroalgal blooms at a temperature of 270 °C with, and without a catalyst with a holding time of 45 min. The effect of different catalysts on the HTL product yield was also studied. Two separation methods were used for recovering the biocrude oil yield from the solid phase. On comparision with other catalyst, Na2CO3 was found to produce higher yiled of bio-oil. The total bio-oil yield was 20.10% with Na2CO3, 18.74% with TiO2, 17.37% with CaO, and 14.6% without a catalyst. The aqueous phase was analyzed for TOC, COD, TN, and TP to determine the nutrient enrichment of water phase for microalgae cultivation. Growth of four microalgae strains viz., Chlorella Minutissima, Chlorella sorokiniana UUIND6, Chlorella singularis UUIND5 and Scenedesmus abundans in the aqueous phase were studied, and compared with a standard growth medium. The results indicate that harmful macroalgal blooms are a suitable feedstock for HTL, and its aqueous phase offers a promising nutrient source for microalgae.


Assuntos
Biocombustíveis , Carbonatos/química , Proliferação Nociva de Algas , Microbiologia Industrial/métodos , Microalgas/metabolismo , Biomassa , Catálise , Temperatura Alta , Nutrientes/metabolismo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA