RESUMO
In this study, the phytochemical composition, in vitro antioxidant, and anti-inflammatory effects of the aqueous and 60% ethanolic (EtOH) extracts of Santolina rosmarinifolia leaf, flower, and root were examined. The antioxidant activity of S. rosmarinifolia extracts was determined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. The total phenolic content (TPC) of the extracts was measured by the Folin-Ciocalteu assay. The anti-inflammatory effect of the extracts was monitored by the Griess assay. The chemical composition of S. rosmarinifolia extracts was analysed using the LC-MS technique. According to our findings, 60% EtOH leaf extracts showed the highest Trolox equivalent antioxidant capacity (TEAC) values in both ABTS (8.39 ± 0.43 µM) and DPPH (6.71 ± 0.03 µM) antioxidant activity assays. The TPC values of the samples were in good correspondence with the antioxidant activity measurements and showed the highest gallic acid equivalent value (130.17 ± 0.01 µg/mL) in 60% EtOH leaf extracts. In addition, the 60% EtOH extracts of the leaves were revealed to possess the highest anti-inflammatory effect. The LC-MS analysis of S. rosmarinifolia extracts proved the presence of ascorbic acid, catalpol, chrysin, epigallocatechin, geraniol, isoquercitrin, and theanine, among others, for the first time. However, additional studies are needed to investigate the direct relationship between the chemical composition and physiological effects of the herb. The 60% EtOH extracts of S. rosmarinifolia leaves are potential new sources of natural antioxidants and anti-inflammatory molecules in the production of novel nutraceutical products.
Assuntos
Antioxidantes , Asteraceae , Benzotiazóis , Antioxidantes/farmacologia , Ácido Ascórbico , Ácidos Sulfônicos , Anti-Inflamatórios/farmacologiaRESUMO
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Sindecana-1/genética , Sindecana-1/metabolismoRESUMO
Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas. We examined the expression of ZNF554 at mRNA and protein levels in normal brain and gliomas, and then we searched for genome-wide transcriptomic changes in U87 glioblastoma cells transiently overexpressing ZNF554. Immunohistochemistry of brain tissues in our cohort (n = 62) and analysis of large TCGA RNA-Seq data (n = 687) of control, oligodendroglioma, and astrocytoma tissues both revealed decreased expression of ZNF554 towards higher glioma grades. Furthermore, low ZNF554 expression was associated with shorter survival of grade III and IV astrocytoma patients. Overexpression of ZNF554 in U87 cells resulted in differential expression, mostly downregulation of 899 genes. The "PI3K-Akt signaling pathway", known to be activated during glioma development, was the most impacted among 116 dysregulated pathways. Most affected pathways were cancer-related and/or immune-related. Congruently, cell proliferation was decreased and cell cycle was arrested in ZNF554-transfected glioma cells. These data collectively suggest that ZNF554 is a potential tumor suppressor and its decreased expression may lead to the loss of oncogene suppression, activation of tumor pathways, and shorter survival of patients with malignant glioma.
Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Fatores de Transcrição Kruppel-Like/genética , Transdução de Sinais , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Genoma Humano , Glioma/patologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Adulto JovemRESUMO
The human placenta maintains pregnancy and supports the developing fetus by providing nutrition, gas-waste exchange, hormonal regulation, and an immunological barrier from the maternal immune system. The villous syncytiotrophoblast carries most of these functions and provides the interface between the maternal and fetal circulatory systems. The syncytiotrophoblast is generated by the biochemical and morphological differentiation of underlying cytotrophoblast progenitor cells. The dysfunction of the villous trophoblast development is implicated in placenta-mediated pregnancy complications. Herein, we describe gene modules and clusters involved in the dynamic differentiation of villous cytotrophoblasts into the syncytiotrophoblast. During this process, the immune defense functions are first established, followed by structural and metabolic changes, and then by peptide hormone synthesis. We describe key transcription regulatory molecules that regulate gene modules involved in placental functions. Based on transcriptomic evidence, we infer how villous trophoblast differentiation and functions are dysregulated in preterm preeclampsia, a life-threatening placenta-mediated obstetrical syndrome for the mother and fetus. In the conclusion, we uncover the blueprint for villous trophoblast development and its impairment in preterm preeclampsia, which may aid in the future development of non-invasive biomarkers for placental functions and early identification of women at risk for preterm preeclampsia as well as other placenta-mediated pregnancy complications.
Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Marcadores Genéticos , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Transcriptoma , Trofoblastos/patologia , Feminino , Humanos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismoRESUMO
BACKGROUND: LGALS13 (placental protein 13 [PP13]) promoter DNA polymorphisms was evaluated in predicting preeclampsia (PE), given PP13's effects on hypotension, angiogenesis, and immune tolerance. METHODS: First-trimester plasma samples (49 term and 18 intermediate) of PE cases matched with 196 controls were collected from King's College Hospital, London, repository. Cell-free DNA was extracted and the LGALS13 exons were sequenced after PCR amplification. Expression of LGALS13 promoter reporter constructs was determined in BeWo trophoblast-like cells with luciferase assays. Adjusted odds ratio (OR) was calculated for the A/A genotype combined with maternal risk factors. RESULTS: The A/A, A/C, and C/C genotypes in the -98 promoter position were in Hardy-Weinberg equilibrium in the control but not in the PE group (p < 0.036). The dominant A/A genotype had higher frequency in the PE group (p < 0.001). The A/C and C/C genotypes protected from PE (p < 0.032). The ORs to develop term and all PE, calculated for the A/A genotype, previous PE, body mass index (BMI) >35, black ethnicity, and maternal age >40 were 15.6 and 11.0, respectively (p < 0.001). In luciferase assays, the "-98A" promoter variant had lower expression than the "-98C" variant in non-differentiated (-13%, p = 0.04) and differentiated (-26%, p < 0.001) BeWo cells. Forskolin-induced differentiation led to a larger expression increase in the "-98C" variant than in the "-98A" variant (4.55-fold vs. 3.85-fold, p < 0.001). CONCLUSION: Lower LGALS13 (PP13) expression with the "A" nucleotide in the -98 promoter region position (compared to "C") and high OR calculated for the A/A genotype in the -98A/C promoter region position, history of previous PE, BMI >35, advanced maternal age >40, and black ethnicity could serve to aid in PE prediction in the first trimester.
Assuntos
População Negra , Galectinas/genética , Predisposição Genética para Doença , Idade Materna , Obesidade/complicações , Polimorfismo de Nucleotídeo Único , Pré-Eclâmpsia/etiologia , Proteínas da Gravidez/genética , Primeiro Trimestre da Gravidez/genética , Adulto , Feminino , Genótipo , Humanos , Pré-Eclâmpsia/genética , Gravidez , Recidiva , Fatores de RiscoRESUMO
Heterogeneity of cell populations in various biological systems has been widely recognized, and the highly heterogeneous nature of cancer cells has been emerging with clinical relevance. Single-cell analysis using a combination of high-throughput and multiparameter approaches is capable of reflecting cell-to-cell variability, and at the same time of unraveling the complexity and interdependence of cellular processes in the individual cells of a heterogeneous population. In this review, analytical methods and microfluidic tools commonly used for high-throughput, multiparameter single-cell analysis of DNA, RNA, and proteins are discussed. Applications and limitations of currently available technologies for cancer research and diagnostics are reviewed in the light of the ultimate goal to establish clinically applicable assays.
Assuntos
Ácidos Nucleicos/análise , Análise de Célula Única/métodos , Animais , Citometria de Fluxo , Genoma , Genômica , Humanos , Ligantes , Espectrometria de Massas , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Microscopia , Metástase Neoplásica , Neoplasias/diagnóstico , Proteínas , Proteômica , Análise de Sequência de RNA , TranscriptomaRESUMO
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
RESUMO
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To improve pre- and post-operative diagnosis and prognosis novel molecular markers are desirable. Here we used MALDI imaging mass spectrometry (IMS) and immunohistochemistry (IHC) to seek tumor specific expression of proteins and lipids in HNSCC samples. Among low molecular weight proteins visualized, S100A8 and S100A9 were found to be expressed in the regions of tumor tissue but not in the surrounding healthy stroma of a post-operative microdissected tissue. Marker potential of S100A8 and S100A9 was confirmed by immunohistochemistry of paraffin-embedded pathological samples. Imaging lipids showed a remarkable depletion of lysophosphatidylcholine species LPC[16:0], LPC[18:2] and, in parallel, accumulation of major glycerophospholipid species PE-P[36:4], PC[32:1], PC[34:1] in neoplastic areas. This was confirmed by shotgun lipidomics of dissected healthy and tumor tissue sections. A combination of the negative (LPC[16:0]) and positive (PC[32:1], PC[34:1]) markers was also applicable to uncover tumorous character of a pre-operative biopsy. Furthermore, marker potential of lysophospholipids was supported by elevated expression levels of the lysophospholipid degrading enzyme lysophospholipase A1 (LYPLA1) in the tumor regions of paraffin-embedded HNSCC samples. Finally, experimental evidence of 3D cell spheroid tests showed that LPC[16:0] facilitates HNSCC invasion, implying that HNSCC progression in vivo may be dependent on lysophospholipid supply. Altogether, a series of novel proteins and lipid species were identified by IMS and IHC screening, which may serve as potential molecular markers for tumor diagnosis, prognosis, and may pave the way to better understand HNSCC pathophyisiology.
RESUMO
INTRODUCTION: Placental Protein 5 (PP5)/Tissue Factor Pathway Inhibitor-2 (TFPI-2) is an extracellular matrix-associated protein mainly expressed by the syncytiotrophoblast that may regulate trophoblast invasion. Our aim was to study placental PP5/TFPI-2 expression and its relation to placental pathology in various forms of preeclampsia and HELLP syndrome. METHODS: Placental and maternal blood specimens were collected at the time of delivery from the same women in the following groups: 1) early controls; 2) early preeclampsia; 3) early preeclampsia with HELLP syndrome; 4) late controls; and 5) late preeclampsia. After histopathological examination, placental specimens were immunostained with polyclonal anti-PP5/TFPI-2 antibody on Western blot and tissue microarray immunohistochemistry. Placental PP5/TFPI-2 immunoscores were assessed manually and with a semi-automated method. Maternal sera were immunoassayed for PP5/TFPI-2. RESULTS: PP5/TFPI-2 was localized to the cytoplasm of syncytiotrophoblast. Manual and semi-automated PP5/TFPI-2 immunoscores were higher in early preeclampsia with or without HELLP syndrome but not in late preeclampsia than in respective controls. In patients with preeclampsia, the correlation of placental PP5/TFPI-2 expression with maternal vascular malperfusion score of the placenta was positive while it was negative with birthweight and placental weight. Maternal serum PP5/TFPI-2 concentration was higher in early preeclampsia and it tended to be higher in early preeclampsia with HELLP syndrome than in early controls. DISCUSSION: Our findings suggest that an increased placental PP5/TFPI-2 expression may be associated with abnormal placentation in early preeclampsia, with or without HELLP syndrome.
Assuntos
Glicoproteínas/metabolismo , Síndrome HELLP/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Síndrome HELLP/patologia , Humanos , Placenta/patologia , Placentação , Pré-Eclâmpsia/patologia , GravidezRESUMO
BACKGROUND: More than 50 human placental proteins were isolated and physico-chemically characterized in the 70-80s by Hans Bohn and co-workers. Many of these proteins turned to have important role in placental functions and diagnostic significance in pregnancy complications. Among these proteins was membrane-associated placental protein 4 (MP4), for which identity or function has not been identified yet. Our aim was to analyze the sequence and placental expression of this protein in normal and complicated pregnancies including miscarriage, preeclampsia and HELLP syndrome. METHODS: Lyophilized MP4 protein and frozen healthy placental tissue were analyzed using HPLC-MS/MS. Placental tissue samples were obtained from women with elective termination of pregnancy (first trimester controls, n = 31), early pregnancy loss (EPL) (n = 13), early preeclampsia without HELLP syndrome (n = 7) and with HELLP syndrome (n = 8), late preeclampsia (n = 8), third trimester early controls (n = 5) and third trimester late controls (n = 9). Tissue microarrays were constructed from paraffin-embedded placentas (n = 81). Slides were immunostained with monoclonal perlecan antibody and evaluated using light microscopy and virtual microscopy. Perlecan was also analyzed for its expression in placentas from normal pregnancies using microarray data. RESULTS: Mass spectrometry-based proteomics of MP4 resulted in the identification of basement membrane-specific heparan sulfate proteoglycan core protein also known as perlecan. Immunohistochemistry showed cytoplasmic perlecan localization in syncytiotrophoblast and cytotrophoblasts of the villi. Perlecan immunoscore decreased with gestational age in the placenta. Perlecan immunoscores were higher in EPL compared to controls. Perlecan immunoscores were higher in early preeclampsia without and with HELLP syndrome and lower in late preeclampsia than in respective controls. Among patients with preeclampsia, placental perlecan expression positively correlated with maternal vascular malperfusion and negatively correlated with placental weight. CONCLUSION: Our findings suggest that an increased placental perlecan expression may be associated with hypoxic ischaemic injury of the placenta in miscarriages and in early preeclampsia with or without HELLP syndrome.
RESUMO
The complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored. Here, we found that human and mouse T cells expressed SHBG intrinsically. In addition, B lymphoid cell lines as well as both primary B and T lymphocytes bound and internalized external SHBG, and the amount of plasma membrane-bound SHBG decreased in B cells of pregnant compared to non-pregnant women. As potential mediators of this process, SHBG receptor candidates expressed by lymphocytes were identified in silico, including estrogen receptor (ER) alpha. Furthermore, cell surface-bound SHBG was detected in close proximity to membrane ERs while highly colocalizing with lipid rafts. The SHBG-membrane ER interaction was found functional since SHBG promoted estradiol uptake by lymphocytes and subsequently influenced Erk1/2 phosphorylation. In conclusion, the SHBG-SHBG receptor-membrane ER complex participates in the rapid estradiol signaling in lymphocytes, and this pathway may be altered in B cells in pregnant women.
Assuntos
Linfócitos B/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Globulina de Ligação a Hormônio Sexual/fisiologia , Linfócitos T/metabolismo , Animais , Linfócitos B/citologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Linfócitos T/citologiaRESUMO
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1ß, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Assuntos
Imunidade Adaptativa/imunologia , Galectinas/imunologia , Galectinas/metabolismo , Placenta/imunologia , Placenta/metabolismo , Aborto Espontâneo/imunologia , Adulto , Apoptose/imunologia , Biomarcadores/metabolismo , Citocinas/imunologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Gravidez , Primeiro Trimestre da Gravidez/imunologia , Linfócitos T/imunologia , Adulto JovemRESUMO
The aim of the present study was to investigate the anticancer properties of a set of furanoacridone alkaloids, arborinine and evoxanthine, including the inhibitory effect of P-glycoprotein (Pgp) and the apoptosis-inducing capacity. The tested alkaloids were evaluated for multidrug resistance (MDR)-reversing activity on human Pgp-transfected L5178 mouse lymphoma cells, using the rhodamine-123 (Rh-123) assay. The antiproliferative effects of natural compounds and their interactions with doxorubicin were determined in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Apoptosis-inducing activity was additionally measured by means of dual annexin V and propidium iodide staining. RT-PCR was used to test the expression of Pgp mRNA after acridone treatment. All of the acridones investigated increased the accumulation of Rh-123. Gravacridonetriol and gravacridonediol monomethyl ether increased the antiproliferative effect of doxorubicin on resistant L5178 cells. Treatment with these agents resulted in a decrease in Pgp mRNA levels. Naturally occurring acridone alkaloids exhibit a beneficial combination of anticancer effects and, accordingly, the acridone skeleton can be considered useful in the design of novel antiproliferative agents.
Assuntos
Acridonas/farmacologia , Alcaloides/farmacologia , Leucemia L5178/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Anexina A5 , Apoptose/efeitos dos fármacos , Citometria de Fluxo , Leucemia L5178/metabolismo , Camundongos , Propídio , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rodamina 123/farmacocinética , Coloração e Rotulagem/métodosRESUMO
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Assuntos
Doenças Placentárias , Pré-Eclâmpsia , Adulto , Biomarcadores/sangue , Feminino , Humanos , Doenças Placentárias/sangue , Doenças Placentárias/genética , Doenças Placentárias/fisiopatologia , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/fisiopatologia , Gravidez , Proteômica , Biologia de Sistemas , Trofoblastos/metabolismo , Trofoblastos/patologiaRESUMO
The stress inducible heat shock protein 70 (Hsp70) is present specifically on the tumour cell surface yet without a pro-tumour function revealed. We show here that cell surface localised Hsp70 (sHsp70) supports clathrin-independent endocytosis (CIE) in melanoma models. Remarkably, ability of Hsp70 to cluster on lipid rafts in vitro correlated with larger nano-domain sizes of sHsp70 in high sHsp70 expressing cell membranes. Interfering with Hsp70 oligomerisation impaired sHsp70-mediated facilitation of endocytosis. Altogether our findings suggest that a sub-fraction of sHsp70 co-localising with lipid rafts enhances CIE through oligomerisation and clustering. Targeting or utilising this tumour specific mechanism may represent an additional benefit for anti-cancer therapy.
Assuntos
Clatrina/metabolismo , Endocitose , Proteínas de Choque Térmico HSP70/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/química , Microdomínios da Membrana , Camundongos , Agregados ProteicosRESUMO
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca(2+) imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca(2+) response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca(2+) signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.
Assuntos
Complexo CD3/metabolismo , Antígenos CD59/metabolismo , Sinalização do Cálcio , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Membrana Celular/metabolismo , Humanos , Células JurkatRESUMO
TNF-related ligands (with the exception of lymphotoxin-α) are synthesized as type II transmembrane proteins, though many of them also have soluble forms. An increasing number of publications report that these 'ligands' behave as receptors, activating intracellular signaling pathways when interacting with cognate 'receptors' or agonistic antibodies. Most members of the TNF family and their receptors influence survival, proliferation, differentiation or activation of immune cells. The elicited 'reverse signals' also have significant importance. They proved to be involved in the activation of APCs, T and B cells, differentiation of osteoclasts and apoptosis of activated macrophages. They influence the balance between destructive immune response and tolerance. Several examples show that therapeutic manipulation of the reverse signal can help to treat malignancies as well as autoimmune disorders.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Imunoterapia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Retroalimentação Fisiológica , Humanos , Tolerância Imunológica , Imunidade , Ativação Linfocitária , Transdução de Sinais/imunologiaRESUMO
Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same time, tumor-derived extracellular Hsp70 has been recognized as a "chaperokine", activating antitumor immunity. In this review we discuss localization dependent functions of Hsp70 in the context of invasive cancer. Understanding the molecular principles of metastasis formation steps, as well as interactions of the tumor cells with the microenvironment and the immune system is essential for fighting metastatic cancer. Although Hsp70 has been implicated in different steps of the metastatic process, the exact mechanisms of its action remain to be explored. Known and potential functions of Hsp70 in controlling or modulating of invasion and metastasis are discussed.
RESUMO
When transmembrane form of tumor necrosis factor (mTNF) interacts with its cognate receptors or agonistic antibodies signaling pathways are activated in the ligand expressing cells. This "reverse signaling" appears a fine-tuning control mechanism in the immune response. Despite a clinical relevance key molecules of TNF reverse signaling and their functions remain elusive. We examined the role of CKIP-1, an interacting partner of the N terminal fragment of mTNF in inflammation and TNF reverse signaling. We found that CKIP-1 expression was elevated upon LPS challenge in THP-1 human monocyte model cells. Overexpression of CKIP-1 triggered classical activation of THP-1 cells and transactivated the human TNF promoter when co-expressed with c-Jun in the HEK293 model system. TNF reverse signaling induced a massive translocation of CKIP-1 from the plasma membrane to intracellular compartments in THP-1 cells. Expression of the N terminal fragment of mTNF in HEK293 cells resembled the effects of TNF reverse signaling with respect to relocalization of CKIP-1. In parallel with the translocation, CKIP-1-triggered activation of THP-1 cells was antagonized by TNF reverse signaling. Similarly, the presence of the N terminal fragment of mTNF inhibited CKIP-1 mediated TNF promoter activation in HEK293 cells. Both TNF reverse signaling in THP-1 cells and expression of the N terminal fragment of mTNF in HEK293 cells were found to induce apoptosis that could be prevented by overexpression of CKIP-1. Our findings demonstrate that CKIP-1 activates pro-inflammatory pathways and interferes with TNF reverse signaling induced apoptosis in human model cells.
Assuntos
Proteínas de Transporte/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/genética , Proteínas de Transporte/genética , Retroalimentação Fisiológica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/imunologia , Proteínas de Membrana/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico/genética , Transdução de Sinais , Ativação Transcricional/genética , Transgenes/genética , Fator de Necrose Tumoral alfa/genéticaRESUMO
Tumor specific cell surface localization and release of the stress inducible heat shock protein 70 (Hsp70) stimulate the immune system against cancer cells. A key immune stimulatory function of tumor-derived Hsp70 has been exemplified with the murine melanoma cell model, B16 overexpressing exogenous Hsp70. Despite the therapeutic potential mechanism of Hsp70 transport to the surface and release remained poorly understood. We investigated principles of Hsp70 trafficking in B16 melanoma cells with low and high level of Hsp70. In cells with low level of Hsp70 apparent trafficking of Hsp70 was mediated by endosomes. Excess Hsp70 triggered a series of changes such as a switch of Hsp70 trafficking from endosomes to lysosomes and a concomitant accumulation of Hsp70 in lysosomes. Moreover, lysosomal rerouting resulted in an elevated concentration of surface Hsp70 and enabled active release of Hsp70. In fact, hyperthermia, a clinically applicable approach triggered immediate active lysosomal release of soluble Hsp70 from cells with excess Hsp70. Furthermore, excess Hsp70 enabled targeting of internalized surface Hsp70 to lysosomes, allowing in turn heat-induced secretion of surface Hsp70. Altogether, we show that excess Hsp70 expressed in B16 melanoma cells diverts Hsp70 trafficking from endosomes to lysosomes, thereby supporting its surface localization and lysosomal release. Controlled excess-induced lysosomal rerouting and secretion of Hsp70 is proposed as a promising tool to stimulate anti-tumor immunity targeting melanoma.