Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Chem Soc ; 146(29): 20080-20085, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001844

RESUMO

The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.


Assuntos
Pró-Fármacos , Tirosina , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Tirosina/química , Paládio/química , Estrutura Molecular , Imunoconjugados/química
2.
Biotechniques ; 69(3): 200-205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32672060

RESUMO

Advances in in vitro display and protein engineering yield therapeutics with affinities in the picomolar range. The Gyrolab® microfluidics platform uses the kinetic exclusion assay principle to measure subnanomolar solution affinities. This work describes application of the Gyrolab solution affinity module and the new multi-curve analysis feature to determine affinity of the PD-L1 Adnectin™ positron emission tomography radioligand, which was measured as 20 pM for human PD-L1. We also report key parameters that affect assay signal-to-background ratio and data quality, such as detection reagent concentration. Gyrolab offers the necessary throughput for rapid assay development with low sample consumption, as demonstrated in this study, which also provides helpful tips for assay optimization for solution affinity measurement.


Assuntos
Antígeno B7-H1/isolamento & purificação , Microfluídica/métodos , Tomografia por Emissão de Pósitrons/métodos , Antígeno B7-H1/química , Antígeno B7-H1/genética , Humanos , Ligantes , Ligação Proteica/genética
3.
Protein Sci ; 13(12): 3085-91, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15537753

RESUMO

The refolding of barstar from its urea-unfolded state has been studied extensively using various spectroscopic probes and real-time NMR, which provide global and residue-specific information, respectively, about the folding process. Here, a preliminary structural characterization by NMR of barstar in 8 M urea has been carried out at pH 6.5 and 25 degrees C. Complete backbone resonance assignments of the urea-unfolded protein were obtained using the recently developed three-dimensional NMR techniques of HNN and HN(C)N. The conformational propensities of the polypeptide backbone in the presence of 8 M urea have been estimated by examining deviations of secondary chemical shifts from random coil values. For some residues that belong to helices in native barstar, 13C(alpha) and 13CO secondary shifts show positive deviations in the urea-unfolded state, indicating that these residues have propensities toward helical conformations. These residues are, however, juxtaposed by residues that display negative deviations indicative of propensities toward extended conformations. Thus, segments that are helical in native barstar are unlikely to preferentially populate the helical conformation in the unfolded state. Similarly, residues belonging to beta-strands 1 and 2 of native barstar do not appear to show any conformational preferences in the unfolded state. On the other hand, residues belonging to the beta-strand 3 segment show weak nonnative helical conformational preferences in the unfolded state, indicating that this segment may possess a weak preference for populating a helical conformation in the unfolded state.


Assuntos
Proteínas de Bactérias/química , Ureia/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Solventes/química
4.
PLoS One ; 6(11): e26085, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22087220

RESUMO

Signaling through the heterotrimeric G protein, G12, via Rho induces a striking increase in breast cancer cell invasion. In this study, evidence is provided that the c-Jun NH(2)-terminal kinase (JNK) is a key downstream effector of G12 on this pathway. Expression of constitutively-active Gα12 or activation of G12 signaling by thrombin leads to increased JNK and c-Jun phosphorylation. Pharmacologic inhibition of JNK or knockdown of JNK expression by siRNA significantly decreases G12-induced JNK activation as well as the ability of breast cancer cells to invade a reconstituted basement membrane. Furthermore, expression of dominant-negative Rho or treatment of cells with an inhibitor of the Rho kinase, ROCK, reduces G12-induced JNK and c-Jun activation, and ROCK inhibitor treatment also inhibits G12-induced cellular invasion. JNK knockdown or ROCK inhibitor treatment has no effect on activation of Rho by G12. Taken together, our data indicate that JNK activation is required for G12-induced invasion of breast cancer cells and that JNK is downstream of Rho and ROCK on this pathway. This study implicates a G12-stimulated mitogen-activated protein kinase cascade in cancer cell invasion, and supports a role for JNK in cancer progression.


Assuntos
Neoplasias da Mama/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Membrana Basal , Feminino , Humanos , Invasividade Neoplásica , Fosforilação , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Br J Pharmacol ; 158(1): 32-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19422395

RESUMO

The G12 subfamily of heterotrimeric guanine nucleotide-binding proteins consists of two alpha subunits, G alpha12 and G alpha13. These proteins mediate signalling via G protein-coupled receptors and have been implicated in various physiological and pathophysiological processes. A number of direct and indirect effectors of G alpha12 and G alpha13 have been identified that mediate, or have been proposed to mediate, the diverse cellular responses accompanying activation of G12 proteins. This review describes the signalling pathways and cellular events stimulated by G12 proteins, with a particular emphasis on processes that are important in regulating cell migration and invasion, and could potentially be involved in the pathophysiology of cancer metastasis. Experimental findings directly implicating G12 proteins in the spread of metastatic disease are also summarized, indicating the importance of targeted inhibition of G12 signalling as a potential therapeutic option for locally advanced and metastatic disease.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Invasividade Neoplásica/patologia , Neoplasias/etiologia , Neoplasias/patologia , Animais , Movimento Celular/fisiologia , Sistemas de Liberação de Medicamentos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Invasividade Neoplásica/fisiopatologia , Invasividade Neoplásica/prevenção & controle , Neoplasias/química , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Proc Natl Acad Sci U S A ; 103(21): 8173-8, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16705036

RESUMO

Although the prognosis for patients with early-stage breast cancer has improved, the therapeutic options for patients with locally advanced and metastatic disease are limited. To improve the treatment of these patients, the molecular mechanisms underlying breast cancer invasion and metastasis must be understood. In this study, we report that signaling through the G12 family of heterotrimeric G proteins (Galpha12 and Galpha13) promotes breast cancer cell invasion. Moreover, we demonstrate that inhibition of G12 signaling reduces the metastatic dissemination of breast cancer cells in vivo. Finally, we demonstrate that the expression of Galpha12 is significantly up-regulated in the earliest stages of breast cancer, implying that amplification of G12 signaling may be an early event in breast cancer progression. Taken together, these observations identify the G12 family proteins as important regulators of breast cancer invasion and suggest that these proteins may be targeted to limit invasion- and metastasis-induced patient morbidity and mortality.


Assuntos
Neoplasias da Mama/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica , Adenocarcinoma/metabolismo , Adenoviridae/metabolismo , Animais , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Retroviridae/metabolismo , Transdução de Sinais , Regulação para Cima
7.
J Biol Chem ; 280(18): 18049-55, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15746095

RESUMO

The heterotrimeric G protein G(12) has been implicated in such cellular regulatory processes as cytoskeletal rearrangement, cell-cell adhesion, and oncogenic transformation. Although the activated alpha-subunit of G(12) has been shown to interact directly with a number of protein effectors, the roles of many of these protein-protein interactions in G(12)-mediated cell physiology are poorly understood. To begin dissecting the specific cellular pathways engaged upon G(12) activation, we produced a series of substitution mutants in the regions of Galpha(12) predicted to play a role in effector binding. Here we report the identification and characterization of an altered form of Galpha(12) that is functionally uncoupled from signaling through the monomeric G protein Rho, a protein known to propagate several Galpha(12)-mediated signals. This mutant of Galpha(12) fails to bind the Rho-specific guanine nucleotide exchange factors p115RhoGEF and LARG (leukemia-associated RhoGEF), fails to stimulate Rho-dependent transcriptional activation, and fails to trigger activation of RhoA and the Rho-mediated cellular responses of cell rounding and c-jun N-terminal kinase activation. Importantly, this mutant of Galpha(12) retains coupling to the effector protein E-cadherin, as evidenced by its ability both to bind E-cadherin in vitro and to disrupt E-cadherin-mediated cell-cell adhesion. Furthermore, this mutant retains the ability to trigger beta-catenin release from the cytoplasmic domain of cadherin. This identification of a variant of Galpha(12) that is selectively uncoupled from one signaling pathway while retaining signaling capacity through a separate pathway will facilitate investigations into the mechanisms through which G(12) proteins mediate diverse biological responses.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Transdução de Sinais/fisiologia , Caderinas/fisiologia , Linhagem Celular , Humanos , Ligação Proteica/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho
8.
Biochemistry ; 41(8): 2641-54, 2002 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11851411

RESUMO

The unfolding of ribonuclease A was studied in 5.2 M guanidine hydrochloride at pH 8 and 10 degrees C using multiple optical probes, native-state hydrogen exchange (HX), and pulse labeling by hydrogen exchange. First, native-state HX studies were used to demonstrate that the protein exists in two slowly interconverting forms under equilibrium native conditions: a predominant exchange-incompetent N form and an alternative ensemble of conformations, N(I), in which some amide hydrogens are fully exposed to exchange. Pulsed HX studies indicated that, during unfolding, the rates of exposure to exchange with solvent protons were similar for all backbone NH probe protons. It is shown that two parallel routes of unfolding are available to the predominant N conformation as soon as it encounters strong unfolding conditions. A fraction of molecules appears to rapidly form N(I) on one route. On the other route an exchange-incompetent intermediate state ensemble, I(U)(2), is formed. The kinetics of unfolding measured by far-UV circular dichroism (CD) were faster than those measured by near-UV CD and intrinsic tyrosine fluorescence of the protein. The logarithms of the rate constants of the unfolding reaction measured by all three optical probes also showed a nonlinear dependence on GdnHCl concentration. All of the data suggest that N(I) and I(U)(2) are nativelike in their secondary and tertiary structures. While N(I) unfolds directly to the fully exchange-competent unfolded state (U), I(U)(2) forms another intermediate I(U)(3) which then unfolds to U. I(U)(3) is devoid of all native alpha-helical secondary structure and has only 30% of the tertiary interactions still intact. Since the rates of global unfolding measured by near-UV CD and fluorescence agree well with the rates of exposure determined for all of the backbone NH probe protons, it appears that the rate-limiting step for the unfolding of RNase A is the dissolution of the entire native tertiary structure and penetration of water into the hydrophobic core.


Assuntos
Hidrogênio/química , Ribonuclease Pancreático/metabolismo , Animais , Bovinos , Dicroísmo Circular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Pâncreas/enzimologia , Conformação Proteica , Desnaturação Proteica , Ribonuclease Pancreático/química , Espectrofotometria Ultravioleta
9.
Biochemistry ; 41(31): 9885-99, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146954

RESUMO

Barstar is known to form a molten globule-like A form below pH 4. This form exists as a soluble aggregate of 16 monomeric subunits, and appears to remain homogeneous in solution for at least two weeks. Here, structural characterization by NMR of the flexible regions in the A form of barstar has been carried out at pH 2.7 and 25 degrees C. Significantly, the A form appears to be a symmetrical aggregate. Using the recently described fast assignment strategy from HNN and HN(C)N spectra, along with the standard triple resonance and three-dimensional NMR experiments, the flexible segment of the aggregate has been identified to belong largely to the N-terminal end of the polypeptide chain; sequential connectivities were obtained for the first 20 residues (except two) from these experiments. This segment is free in each of the monomeric subunits, and does not form a part of the aggregated core of the A form. The secondary chemical shifts of these residues suggest propensity toward an extended structure. Their (3)J(HN,H)(alpha) coupling constants have values corresponding to those in a random coil structure. However, a few medium-range NOEs, some of them involving side chain atoms, are observed between some residues in this segment. The lowered temperature coefficients of the H(N) chemical shifts compared to random coil values indicate possibilities of some hydrogen bonding in this region. Analysis of the (15)N relaxation parameters and reduced spectral density functions, in particular the negative values of heteronuclear NOEs, indicates large-amplitude high-frequency motions in the N-terminal segments; the first three residues show more negative NOEs than the others. The (15)N transverse relaxation rates and the J(0) spectral density values for residues Ser12 and Ser69 are significantly larger than for the rest, indicating some microsecond to millisecond time scale conformational exchange contributions to the relaxation of these residues. Taken all together, the data suggest that the A form of barstar is an aggregate with a rigid core, but with the N-terminal 20 residues of each of the monomeric subunits, in a highly dynamic random coil conformation which shows transient local ordering of structure. The N-terminal segment, anchored to the aggregated core, exhibits free-flight motion.


Assuntos
Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Luz , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA