Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(8): e2205881, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504329

RESUMO

Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS2 )@vanadium sulfide (VS2 ) and tungsten sulfide (WS2 )@VS2  hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS2 @VS2  and WS2 @VS2  electrodes exhibit high specific capacitances of 513 and 615 F g- 1 , respectively, at an applied current of 2.5 A g- 1  by the three-electrode configuration. The asymmetric device fabricated using WS2 @VS2  electrode exhibits a high specific capacitance of 222 F g- 1  at an applied current of 2.5 A g- 1  with the specific energy of 52 Wh kg- 1  at a specific power of 1 kW kg- 1 . For HER, the WS2 @VS2  catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm- 2 , a Tafel slope of 39 mV dec-1 , and an exchange current density of 1.73 mA cm- 2 . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS2 @VS2  and WS2 @VS2  heterostructures.

2.
Small ; 18(14): e2107284, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199455

RESUMO

Metal organic frameworks (MOFs), which constitute a new class of porous organic-inorganic hybrid materials, have gained considerable attention in the fields of electrochemical energy storage and conversion devices owing to their open topological structures, large surface areas, tunable morphologies, and extreme redox activity. A synthesis protocol that comprises coprecipitation followed by controlled calcination processes to design a battery-type electrode is used. This electrode consists of three-dimensional (3D), ant cave-like polyhedrons of nickel-cobalt alloy on graphitic carbon (GC; NiCo@GC) nanostructures; trimesic acid is used as a potential MOF-linker. The developed NiCo@GC sample exhibits mesoporous characteristics with the maximum surface area of 94.08 m2 g-1 at 77 K. In addition, the redox activity at different sweep rates reveals the battery-type charge storage behavior of the NiCo@GC electrode; its three-electrode assembly provides 444 C g-1 specific capacity at 2 A g-1 with long-term capacity retention. The constructed supercapattery (SC) devices (i.e., AC//NiCo@GC) achieved capacity, specific energy, and specific power are 74.3 mAh g-1 , 39.5 Wh kg-1 , and 665 W kg-1 , respectively. Owing to its reasonable electrochemical characteristics, the prepared NiCo@GC material is a promising candidate for supercapattery electrodes for portable electronic devices.


Assuntos
Estruturas Metalorgânicas , Eletroquímica , Eletrodos , Níquel , Oxirredução
3.
Small ; 18(13): e2104216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146911

RESUMO

The interface architectures of inorganic-organic halide perovskite-based devices play key roles in achieving high performances with these devices. Indeed, the perovskite layer is essential for synergistic interactions with the other practical modules of these devices, such as the hole-/electron-transfer layers. In this work, a heterostructure geometry comprising transition-metal dichalcogenides (TMDs) of molybdenum dichalcogenides (MoX2  = MoS2 , MoSe2 , and MoTe2 ) and perovskite- or hole-transfer layers is prepared to achieve improved device characteristics of perovskite solar cells (PSCs), X-ray detectors, and photodetectors. A superior efficiency of 11.36% is realized for the active layer with MoTe2 in the PSC device. Moreover, X-ray detectors using modulated MoTe2 nanostructures in the active layers achieve 296 nA cm-2 , 3.12 mA (Gy cm2 )-1 and 3.32 × 10-4 cm2 V-1 s-1 of collected current density, sensitivity, and mobility, respectively. The fabricated photodetector produces a high photoresponsivity of 956 mA W-1 for a visible light source, with an excellent external quantum efficiency of 160% for the perovskite layer containing MoSe2 nanostructures. Density functional theory calculations are made for pure and MoX2 doped perovskites' geometrical, density of states and optical properties variations evidently. Thus, the present study paves the way for using perovskite-based devices modified by TMDs to develop highly efficient semiconductor devices.

4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499593

RESUMO

A first-principles calculation based on DFT investigations on the structural, optoelectronic, and thermoelectric characteristics of the newly designed pyrochlore oxides La2Tm2O7 (Tm = Hf, Zr) is presented in this study. The main quest of the researchers working in the field of renewable energy is to manufacture suitable materials for commercial applications such as thermoelectric and optoelectronic devices. From the calculated structural properties, it is evident that La2Hf2O7 is more stable compared to La2Zr2O7. La2Hf2O7 and La2Zr2O7 are direct bandgap materials having energy bandgaps of 4.45 and 4.40 eV, respectively. No evidence regarding magnetic moment is obtained from the spectra of TDOS, as a similar overall profile for both spin channels can be noted. In the spectra of ε2(ω), it is evident that these materials absorb maximum photons in the UV region and are potential candidates for photovoltaic device applications. La2Tm2O7 (Tm = Hf, Zr) are also promising candidates for thermoelectric device applications, as these p-type materials possess ZT values of approximately 1, which is the primary criterion for efficient thermoelectric materials.


Assuntos
Comércio , Óxidos , Fenômenos Físicos , Fótons , Energia Renovável
5.
Sensors (Basel) ; 21(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546357

RESUMO

Herein, the fabrication of a novel highly sensitive and fast hydrogen (H2) gas sensor, based on the Ta2O5 Schottky diode, is described. First, Ta2O5 thin films are deposited on silicon carbide (SiC) and silicon (Si) substrates via a radio frequency (RF) sputtering method. Then, Pd and Ni are respectively deposited on the front and back of the device. The deposited Pd serves as a H2 catalyst, while the Ni functions as an Ohmic contact. The devices are then tested under various concentrations of H2 gas at operating temperatures of 300, 500, and 700 °C. The results indicate that the Pd/Ta2O5 Schottky diode on the SiC substrate exhibits larger concentration and temperature sensitivities than those of the device based on the Si substrate. In addition, the optimum operating temperature of the Pd/Ta2O5 Schottky diode for use in H2 sensing is shown to be about 300 °C. At this optimum temperature, the dynamic responses of the sensors towards various concentrations of H2 gas are then examined under a constant bias current of 1 mA. The results indicate a fast rise time of 7.1 s, and a decay of 18 s, for the sensor based on the SiC substrate.

6.
Nano Lett ; 20(3): 1934-1943, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083883

RESUMO

Among p-n junction devices with multilayered heterostructures with WSe2 and MoSe2, a device with the MoSe2-WSe2-MoSe2 (NPN) structure showed a remarkably high photoresponse, which was 1000 times higher than the MoSe2-WSe2 (NP) structure. The ideality factor of the NPN structure was estimated to be ∼1, lower than that of the NP structure. It is claimed that the NPN structure formed a thinner depletion region than that of the NP structure because of the difference of carrier concentrations of MoSe2 and WSe2. Hence, the built-in electric field was weaker, and the motion of the photocarriers was facilitated. These behaviors were confirmed experimentally from a photocurrent mapping analysis and Kelvin probe force microscopy. The work function depended on the wavelength of the illuminator, and quasi-Fermi level was estimated. The surface photovoltage on the MoSe2 region was higher than that on WSe2 because the lower bandgap of MoSe2 induces more electron-hole pair generation.

7.
Nanotechnology ; 31(19): 195701, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31940594

RESUMO

The high transmittance and low reflectance of monolayer hexagonal boron nitride (hBN) lead to its invisibility under white-light, causing serious troubles in the search, transfer, and fabrication of 2D material devices. In this work, we demonstrate enhancing the contrast of hBN on a transparent substrate by simulation and experimental observation, where the highest contrast is obtained by using a polymer-based interfacial layer on a polydimethylsiloxane (PDMS) substrate. The simulation result reveals that the contrast under short wavelength light is higher than that under long wavelength. To confirm this, the red-green-blue components are extracted from the optical color image. The blue component image shows an hBN flake clearly on the substrate, while the hBN flake fades on the green and red components. Moreover, the contrast on transparent substrates have only positive value, while opaque substrates cause both negative and positive contrast depending on the thickness of the interfacial layer. Thus, the high contrast (∼4.5%) of hBN on the PDMS substrate enables us to observe mono- and few-layer hBN flakes under white-light illumination by an optical microscope.

8.
Nano Lett ; 17(3): 1474-1481, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28207266

RESUMO

Direct observation of grains and boundaries is a vital factor in altering the electrical and optoelectronic properties of transition metal dichalcogenides (TMDs), that is, MoSe2 and WSe2. Here, we report visualization of grains and boundaries of chemical vapor deposition grown MoSe2 and WSe2 on silicon, using optical birefringence of two-dimensional layer covered with nematic liquid crystal (LC). An in-depth study was performed to determine the alignment orientation of LC molecules and their correlation with other grains. Interestingly, we found that alignment of liquid crystal has discrete preferential orientations. From computational simulations, higher adsorption energy for the armchair direction was found to force LC molecules to align on it, compared to that of the zigzag direction. We believe that these TMDs with three-fold symmetric alignment could be utilized for display applications.

9.
Chemphyschem ; 16(18): 3959-65, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26472540

RESUMO

By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance.

10.
ACS Appl Mater Interfaces ; 16(8): 10104-10115, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38361321

RESUMO

Hierarchical porous nanowire-like MoS2/CoNiO2 nanohybrids were synthesized via the hydrothermal process. CoNiO2 nanowires were selected due to the edge site, high surface/volume ratio, and superior electrochemical characteristics as the porous backbone for decoration of layered MoS2 nanoflakes to construct innovative structure hierarchical three-dimensional (3D) porous NWs MoS2/CoNiO2 hybrids with excellent charge accumulation and efficient ion transport capabilities. Physicochemical analyses were conducted on the developed hybrid composite, revealing conclusive evidence that the CoNiO2 nanowires have been securely anchored onto the surface of the MoS2 nanoflake array. The electrochemical results strongly proved the benefit of the hierarchical 3D porous MoS2/CoNiO2 hybrid structure for the charge storage kinetics. The synergistic characteristics arising from the MoS2/CoNiO2 composite yielded a notably high specific capacitance of 1340 F/g at a current density of 0.5 A/g. Furthermore, the material exhibited sustained cycling stability, retaining 95.6% of its initial capacitance after 10 000 long cycles. The asymmetric device comprising porous MoS2/CoNiO2//activated carbon encompassed outstanding energy density (93.02 Wh/kg at 0.85 kW/kg) and cycling stability (94.1% capacitance retention after 10 000 cycles). Additionally, the successful illumination of light-emitting diodes underscores the significant potential of the synthesized MoS2/CoNiO2 (2D/1D) hybrid for practical high-energy storage applications.

11.
ACS Appl Mater Interfaces ; 15(22): 26893-26909, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37229631

RESUMO

Understanding the relationship between electronic structure, surface characteristic, and reaction process of a catalyst helps to architect proficient electrodes for sustainable energy development. The highly active and stable catalysts made of earth-abundant materials provide a great endeavor toward green hydrogen production. Herein, we assembled the Co1-xMoxTe (x = 0-1) nanoarray structures into a bifunctional electrocatalyst to achieve high-performance hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) kinetics under alkaline conditions. The designed Co0.75Mo0.25Te and Co0.50Mo0.50 electrocatalysts require minimum overpotential and Tafel slope for high-efficacy HER and OER, respectively. Furthermore, we constructed a Co0.50Mo0.50Te2∥Co0.50Mo0.50Te2 device for overall water splitting with an overpotential of 1.39 V to achieve a current density of 10 mA cm-2, which is superior to noble electrocatalyst performance, with stable reaction throughout the 50 h continuous process. Density functional theory approximations and Gibbs free energy calculations validate the enhanced water splitting reaction catalyzed by the Co0.50Mo0.50Te2 nanoarrays. The partial replacement of Co atoms with Mo atoms in the Co0.50Mo0.50Te2 structure substantially enhances the water electrolysis kinetics through the synergistic effects between the combined metal atoms and the bonded chalcogen.

12.
Micromachines (Basel) ; 14(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38138420

RESUMO

One of the primary objectives of scientific research is to create state-of-the-art multiferroic (MF) materials that exhibit interconnected properties, such as piezoelectricity, magnetoelectricity, and magnetostriction, and remain functional under normal ambient temperature conditions. In this study, we employed first-principles calculations to investigate how changing pnictogen elements affect the structural, electronic, magnetic, and optical characteristics of QFeO3 (Q = Bi, P, SB). Electronic band structures reveal that BiFeO3 is a semiconductor compound; however, PFeO3 and SbFeO3 are metallic. The studied compounds are promising for spintronics, as they exhibit excellent magnetic properties. The calculated magnetic moments decreased as we replaced Bi with SB and P in BiFeO3. A red shift in the values of ε2(ω) was evident from the presented spectra as we substituted Bi with Sb and P in BiFeO3. QFeO3 (Q = Bi, P, SB) showed the maximum absorption of incident photons in the visible region. The results obtained from calculating the optical parameters suggest that these materials have a strong potential to be used in photovoltaic applications.

13.
Nanoscale ; 15(16): 7329-7343, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36974757

RESUMO

This work elaborates on the decoration of metal oxides (ZnO and Fe3O4) between MXene sheets for use as the supporting geometry of PCBM electron transport layers (ETLs) in perovskite solar cells and X-ray detectors. The metal oxide supports for carrying the plentiful charge carriers and the hydrophobic nature of MXenes provide an easy charge transfer path through their flakes and a smooth surface for the ETL. The developed interface engineering based on the MXene/ZnO and MXene/Fe3O4 hybrid ETL results in improved power conversion efficiencies (PCEs) of 13.31% and 13.79%, respectively. The observed PCE is improved to 25.80% and 30.34% by blending the MXene/ZnO and MXene/Fe3O4 nanoparticles with the PCBM layer, respectively. Various factors, such as surface modification, swift interfacial interaction, roughness decrement, and charge transport improvement, are strongly influenced to improve the device performance. Moreover, X-ray detectors with the MXene/Fe3O4-modulated PCBM ETL achieve a CCD-DCD, sensitivity, mobility, and trap density of 15.46 µA cm-2, 4.63 mA per Gy per cm2, 5.21 × 10-4 cm2 V-1 s-1, and 1.47 × 1015 cm2 V-1 s-1, respectively. Metal oxide-decorated MXene sheets incorporating the PCBM ETL are a significant route for improving the photoactive species generation, long-term stability, and high mobility of perovskite-based devices.

14.
Nanotechnology ; 23(28): 285705, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22728533

RESUMO

The influence of grain boundaries and mechanical deformations in graphene film on the electric charge transport is investigated at nanoscale with conductive atomic force microscopy. Large area monolayer graphene samples were prepared by the chemical vapor deposition technique. Field emission scanning electron microscopy confirmed the formation of grain boundaries and the presence of wrinkles. The presence of the D-band in the Raman spectrum also indicated the existence of sharp defects such as grain boundaries. Extremely low conductivity was found at the grain boundaries and the wrinkled surface was also more resistive in comparison to the plain graphene surface. Many samples were experimented with to justify our findings by selecting different areas on the graphene surface. Uniform conductivity was found on grain boundary and wrinkle free graphene surfaces. We made channels of varied lengths by local anodic oxidation to confine the charge carrier to the smallest dimensions to better confirm the alteration in current due to grain boundaries and wrinkles. The experimental findings are discussed with reference to the implementation of graphene as transparent conductive electrode.

15.
J Nanosci Nanotechnol ; 12(4): 3589-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849174

RESUMO

We examined the atomic layer deposition (ALD) of silicon dioxide thin films on a silicon wafer by alternating exposures to tetrakis(ethylamino)silane [Si(NHC2H5)4] and O3. The growth kinetics of silicon oxide films was examined at substrate temperatures ranging from 325 to 514 degrees C. The deposition was governed by a self-limiting surface reaction, and the growth rate at 478 degrees C was saturated at 0.17 nm/cycle for Si(NHC2H5)4 exposures of 2 x 10(6) L (1 L = 10(-6) Torr x s). The films deposited at 365-404 degrees C exhibited a higher deposition rate of 0.20-0.21 nm/cycle. However, they contained impurities, such as carbon and nitrogen, and showed poor film qualities. The concentration of impurities decreased with increasing substrate temperature. It was found that the films deposited in the high-temperature regime (478-514 degrees C) showed excellent physical and electrical properties equivalent to those of LPCVD films.

16.
Nanomaterials (Basel) ; 12(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683771

RESUMO

Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal-organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm-2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm-2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm-2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm-2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.

17.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159681

RESUMO

This work reports the fabrication of vanadium sulfide (VS2) microflower via one-step solvo-/hydro-thermal process. The impact of ethylene glycol on the VS2 morphology and crystal structure as well as the ensuing influences on electrocatalytic hydrogen evolution reaction (HER) and supercapacitor performance are explored and compared with those of the VS2 obtained from the standard pure-aqueous and pure-ethylene glycol solvents. The optimized VS2 obtained from the ethylene glycol and water mixed solvents exhibits a highly ordered unique assembly of petals resulting a highly open microflower structure. The electrode based on the optimized VS2 and exhibits a promising HER electrocatalysis in 0.5 M H2SO4 and 1 M KOH electrolytes, attaining a low overpotential of 161 and 197 mV, respectively, at 10 mA.cm-2 with a small Tafel slope 83 and 139 mVdec-1. In addition, the optimized VS2 based electrode exhibits an excellent electrochemical durability over 13 h. Furthermore, the superior VS2 electrode based symmetric supercapacitor delivers a specific capacitance of 139 Fg-1 at a discharging current density of 0.7 Ag-1 and exhibits an enhanced energy density of 15.63 Whkg-1 at a power density 0.304 kWkg-1. Notably, the device exhibits the capacity retention of 86.8% after 7000 charge/discharge cycles, demonstrating a high stability of the VS2 electrode.

18.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014753

RESUMO

In this study, a honeycomb-like porous-structured nickel-iron-cobalt layered double hydroxide/Ti3C2Tx (NiFeCo-LDH@MXene) composite was successfully fabricated on a three-dimensional nickel foam using a simple hydrothermal approach. Owing to their distinguishable characteristics, the fabricated honeycomb porous-structured NiFeCo-LDH@MXene composites exhibited outstanding bifunctional electrocatalytic activity for pair hydrogen and oxygen evolution reactions in alkaline medium. The developed NiFeCo-LDH@MXene electrocatalyst required low overpotentials of 130 and 34 mV to attain a current density of 10 mA cm-2 for OER and HER, respectively. Furthermore, an assembled NiFeCo-LDH@MXene‖NiFeCo-LDH@MXene device exhibited a cell voltage of 1.41 V for overall water splitting with a robust firmness for over 24 h to reach 10 mA cm-2 current density, signifying outstanding performance for water splitting reactions. These results demonstrated the promising potential of the designed 3D porous NiFeCo-LDH@MXene sheets as outstanding candidates to replace future green energy conversion devices.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35834414

RESUMO

The interface design of inorganic and organic halide perovskite-based devices plays an important role to attain high performance. The modification of transport layers (ETL and HTL) or the perovskite layer is given the crucial inspiration to realize superior power conversion efficiencies (PCEs). The highly conducting 2D materials of CNT, graphene/GO, and transition-metal dichalcogenides (TMDs) are suitable substitutes to tune the electronic structure/work function of perovskite devices. Herein, the nanocomposites composed of molybdenum dichalcogenides (MoX2 = MoS2, MoSe2, and MoTe2) stretched CNT was embedded with HTL or perovskite layer to improve the resulted characteristics of perovskite devices of solar cells and X-ray detectors. A superior solar cell efficiency of 12.57% was realized for the MoTe2@CNT nanocomposites using a modified active layer-composed device. Additionally, X-ray detectors with MoTe2@CNT-modulated active layers achieved 13.32 µA/cm2, 3.99 mA/Gy·cm2, 4.81 × 10-4 cm2/V·s, and 2.13 × 1015 cm2/V·s of CCD-DCD, sensitivity, mobility, and trap density, respectively. Density functional theory approximation was used to realize the improved electronics properties, optical properties, and energy band structures in the MoX2@CNT-doped perovskites evidently. Thus, the current research paves the way for the improvement of highly efficient semiconductor devices based on perovskite-based structures with the use of 2D nanocomposites.

20.
ACS Omega ; 7(34): 30074-30086, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061644

RESUMO

Due to its semiconducting nature, controlled growth of large-area chemical vapor deposition (CVD)-grown two-dimensional (2D) molybdenum disulfide (MoS2) has a lot of potential applications in photodetectors, sensors, and optoelectronics. Yet the controllable, large-area, and cost-effective growth of highly crystalline MoS2 remains a challenge. Confined-space CVD is a very promising method for the growth of highly crystalline MoS2 in a controlled manner. Herein, we report the large-scale growth of MoS2 with different morphologies using NaCl as a seeding promoter for confined-space CVD. Changes in the morphologies of MoS2 are reported by variation in the amount of seeding promoter, precursor ratio, and the growth temperature. Furthermore, the properties of the grown MoS2 are analyzed using optical microscopy, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The electrical properties of the CVD-grown MoS2 show promising performance from fabricated field-effect transistors. This work provides new insight into the growth of large-area MoS2 and opens the way for its various optoelectronic and electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA