RESUMO
Metal-based transparent conductive electrodes (TCEs) are attractive candidates for application in indium tin oxide (ITO)-free solar cells due to their excellent electrical conductivity and cost effectiveness. In perovskite solar cells (PSCs), metal-induced degradation with the perovskite layer leads to various detrimental effects, deteriorating the device performance and stability. Here, we introduce a novel flexible hybrid TCE consisting of a Cu grid-embedded polyimide film and a graphene capping layer, named GCEP, which exhibits excellent mechanical and chemical stability as well as desirable optoelectrical properties. We demonstrated the critical role of graphene as a protection layer to prevent metal-induced degradation and halide diffusion between the electrode and perovskite layer; the performance of the flexible PSCs fabricated with GCEP was comparable to that of their rigid ITO-based counterparts and also exhibited outstanding mechanical and chemical stability. This work provides an effective strategy to design mechanically and chemically robust ITO-free metal-assisted TCE platforms in PSCs.
RESUMO
An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.
RESUMO
Considering the potential applications of all-polymer solar cells (all-PSCs) as wearable power generators, there is an urgent need to develop photoactive layers that possess intrinsic mechanical endurance, while maintaining a high power-conversion efficiency (PCE).Herein a strategy is demonstrated to simultaneously control the intercalation behavior and nanocrystallite size in the polymer-polymer blend by using a newly developed, high-viscosity polymeric additive, poly(dimethylsiloxane-co-methyl phenethylsiloxane) (PDPS), into the TQ-F:N2200 all-PSC matrix. A mechanically robust 10wt% PDPS blend film with a great toughness was obtained. Our results provide a feasible route for producing high-performance ductile all-PSCs, which can potentially be used to realize stretchable all-PSCs as a linchpin of next-generation electronics.
RESUMO
For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (Mw) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high Mw and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.
RESUMO
Operational stability and high performance are the most critical issues that must be addressed in order to propel and advance the current polymer solar cell (PSC) technology to the next level, such as manufacturing and mass production. Herein, we report a high power conversion efficiency (PCE) of 11.2%, together with an excellent device stability in PTB7-Th:PC71BM-based PSCs in the inverted structure by introducing the n-type P(NDI2OD-T2) macromolecular additive (>75% PCE retention at high temperature up to 120 °C, >97% PCE retention after 6 months in inert conditions, >93% PCE retention after 2 months in air with encapsulation, and >80% PCE retention after 140 h in air without encapsulation). The PCE is the highest value ever reported in the single-junction systems based on the PTB7 family and is also comparable to the previously reported highest PCE of inverted PSCs. These promising results are attributed to the efficient optimization and stabilization of the blend film morphology in the photoactive layer, achieved using the P(NDI2OD-T2) additive. From the perspective of manufacturing, our studies demonstrate a promising pathway for fabricating low-cost PSCs with high efficiency as well as long-term stability.
RESUMO
Flexible and crystallized indium-tin oxide (ITO) thin films were successfully obtained on plastic polyethylene terephthalate (PET) films with monolayered graphene as a platform. The highly crystalline ITO (c-ITO) was first fabricated on a rigid substrate of graphene on copper foil and it was subsequently transferred onto a PET substrate by a well-established technique. Despite the plasma damage during ITO deposition, the graphene layer effectively acted as a Cu-diffusion barrier. The c-ITO/graphene/PET electrode with the 60-nm-thick ITO exhibited a reasonable sheet resistance of ~45 Ω sq-1 and a transmittance of ~92% at a wavelength of 550 nm. The c-ITO on the monolayered graphene support showed significant enhancement in flexibility compared with the ITO/PET film without graphene because the atomically controlled monolayered graphene acted as a mechanically robust support. The prepared flexible transparent c-ITO/graphene/PET electrode was applied as the anode in a bulk heterojunction polymer solar cell (PSC) to evaluate its performance, which was comparable with that of the commonly used c-ITO/glass electrode. These results represent important progress in the fabrication of flexible transparent electrodes for future optoelectronics applications.
RESUMO
Developing eco-friendly and cost-effective processes for the synthesis of graphene oxide (GO) is essential for its widespread industrial applications. In this work, we propose a green synthesis technique for GO production using recycled sulfuric acid and filter-processed oxidized natural graphite obtained from a Couette-Taylor flow reactor. The viscosity of reactant mixtures processed from Couette-Taylor flow was considerably lower (â¼200 cP at 25 °C) than that of those from Hummers' method, which enabled the simple filtration process. The filtered sulfuric acid can be recycled and reused for the repetitive GO synthesis with negligible differences in the as-synthesized GO qualities. This removal of sulfuric acid has great potential in lowering the overall GO production cost as the amount of water required during the fabrication process, which takes a great portion of the total production cost, can be dramatically reduced after such acid filtration. The proposed eco-friendly GO fabrication process is expected to promote the commercial application of graphene materials into industry shortly.