Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(22): 222501, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877923

RESUMO

The known I^{π}=8_{1}^{+}, E_{x}=2129-keV isomer in the semimagic nucleus ^{130}Cd_{82} was populated in the projectile fission of a ^{238}U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E_{x}=2001.2(7) keV, and half-life, T_{1/2}=57(3) ns, of the I^{π}=6_{1}^{+} state based on γγ coincidence information. Furthermore, the half-life of the 8_{1}^{+} state, T_{1/2}=224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for ^{134}Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for ^{132}Sn, a doubly magic nucleus far-off stability. A comparison to analogous information for ^{100}Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.

2.
Phys Rev Lett ; 131(26): 262501, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215380

RESUMO

The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of γ-ray transition probabilities with the valence space in medium similarity renormalization group ab initio calculations was performed for the first time in a nucleus far from stability. It was shown that the ab initio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the ab initio models.

3.
Phys Rev Lett ; 129(11): 112501, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154392

RESUMO

The reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood. The conclusion is that seniority is largely conserved in the first πg_{9/2} orbital.

4.
Phys Rev Lett ; 124(2): 022501, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004026

RESUMO

Spectroscopic factors of neutron-hole and proton-hole states in ^{131}Sn and ^{131}In, respectively, were measured using one-nucleon removal reactions from doubly magic ^{132}Sn at relativistic energies. For ^{131}In, a 2910(50)-keV γ ray was observed for the first time and tentatively assigned to a decay from a 5/2^{-} state at 3275(50) keV to the known 1/2^{-} level at 365 keV. The spectroscopic factors determined for this new excited state and three other single-hole states provide first evidence for a strong fragmentation of single-hole strength in ^{131}Sn and ^{131}In. The experimental results are compared to theoretical calculations based on the relativistic particle-vibration coupling model and to experimental information for single-hole states in the stable doubly magic nucleus ^{208}Pb.

5.
Phys Rev Lett ; 122(22): 222502, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283269

RESUMO

A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the ß-decay end point energy of ^{100}Sn were measured more precisely than the literature values. The value and the uncertainty of the resulting strength for the pure 0^{+}→1^{+} Gamow-Teller decay was improved to B_{GT}=4.4_{-0.7}^{+0.9}. A discrimination between different model calculations was possible for the first time, and the level scheme of ^{100}In is investigated further.

6.
Phys Rev Lett ; 122(21): 212502, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283301

RESUMO

The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.

7.
Phys Rev Lett ; 118(20): 202502, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581778

RESUMO

Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4) MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global ß-decay properties for astrophysical simulations may have to be reconsidered.

8.
Phys Rev Lett ; 118(3): 032501, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157341

RESUMO

The first measurement of the low-lying states of the neutron-rich ^{110}Zr and ^{112}Mo was performed via in-beam γ-ray spectroscopy after one proton removal on hydrogen at ∼200 MeV/nucleon. The 2_{1}^{+} excitation energies were found at 185(11) keV in ^{110}Zr, and 235(7) keV in ^{112}Mo, while the R_{42}=E(4_{1}^{+})/E(2_{1}^{+}) ratios are 3.1(2), close to the rigid rotor value, and 2.7(1), respectively. These results are compared to modern energy density functional based configuration mixing models using Gogny and Skyrme effective interactions. We conclude that first levels of ^{110}Zr exhibit a rotational behavior, in agreement with previous observations of lighter zirconium isotopes as well as with the most advanced Monte Carlo shell model predictions. The data, therefore, do not support a harmonic oscillator shell stabilization scenario at Z=40 and N=70. The present data also invalidate predictions for a tetrahedral ground state symmetry in ^{110}Zr.

9.
Phys Rev Lett ; 118(24): 242501, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665635

RESUMO

We report on the first γ-ray spectroscopy of low-lying states in neutron-rich ^{98,100}Kr isotopes obtained from ^{99,101}Rb(p,2p) reactions at ∼220 MeV/nucleon. A reduction of the 2_{1}^{+} state energies beyond N=60 demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations using the Gogny D1S interaction predict level energies in good agreement with experimental results. The identification of a low-lying (0_{2}^{+}, 2_{2}^{+}) state in ^{98}Kr provides the first experimental evidence of a competing configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape coexistence picture suggested by theory.

10.
Nature ; 469(7328): 68-71, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21179086

RESUMO

Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

11.
Phys Rev Lett ; 116(16): 162501, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152796

RESUMO

Several new isotopes, ^{96}In, ^{94}Cd, ^{92}Ag, and ^{90}Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of ^{100}Sn led to the discovery of new proton emitters ^{93}Ag and ^{89}Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with T_{z}=-1/2 toward ^{99}Sn shows a stabilizing effect of the Z=50 shell closure. Production cross sections for nuclei in the vicinity of ^{100}Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target.

12.
Phys Rev Lett ; 114(19): 192501, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024165

RESUMO

The ß-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

13.
Phys Rev Lett ; 115(22): 222502, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650299

RESUMO

The isospin mixing was deduced in the compound nucleus ^{80}Zr at an excitation energy of E^{*}=54 MeV from the γ decay of the giant dipole resonance. The reaction ^{40}Ca+^{40}Ca at E_{beam}=136 MeV was used to form the compound nucleus in the isospin I=0 channel, while the reaction ^{37}Cl+^{44}Ca at E_{beam}=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr_{3}:Ce detectors. The temperature dependence of the isospin mixing was obtained and the zero-temperature value deduced. The isospin-symmetry-breaking correction δ_{C} used for the Fermi superallowed transitions was extracted and found to be consistent with ß-decay data.

14.
Phys Rev Lett ; 113(13): 132502, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302883

RESUMO

Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³8U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³6Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 41⁺ state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2;6⁺→4⁺) rate of ¹³6Sn. These data provide a key benchmark for shell-model interactions far from stability.

15.
Phys Rev Lett ; 113(1): 012501, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-25032921

RESUMO

The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

16.
Phys Rev Lett ; 112(13): 132501, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745408

RESUMO

A low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- ß-emitting isomer. We identify the new state at an excitation energy of Ex=1353 keV, which was populated both in the ß decay of 131Cd83 and after ß-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed.

17.
Phys Rev Lett ; 113(4): 042502, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105611

RESUMO

A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, ß decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.

18.
Phys Rev Lett ; 111(15): 152501, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160593

RESUMO

The level structures of the very neutron-rich nuclei 128Pd and 126Pd have been investigated for the first time. In the r-process waiting-point nucleus 128Pd, a new isomer with a half-life of 5.8(8) µs is proposed to have a spin and parity of 8(+) and is associated with a maximally aligned configuration arising from the g(9/2) proton subshell with seniority υ=2. For 126Pd, two new isomers have been identified with half-lives of 0.33(4) and 0.44(3) µs. The yrast 2(+) energy is much higher in 128Pd than in 126Pd, while the level sequence below the 8(+) isomer in 128Pd is similar to that in the N=82 isotone 130Cd. The electric quadrupole transition that depopulates the 8(+) isomer in 128Pd is more hindered than the corresponding transition in 130Cd, as expected in the seniority scheme for a semimagic, spherical nucleus. These experimental findings indicate that the shell closure at the neutron number N=82 is fairly robust in the neutron-rich Pd isotopes.

19.
Phys Rev Lett ; 110(17): 172501, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679711

RESUMO

A measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn. The value B(E2; 0+ → 2+) = 0.10(4) e2b2 is significantly lower than earlier results for 106Sn and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.

20.
Phys Rev Lett ; 85(12): 2454-7, 2000 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-10978080

RESUMO

High-spin states in 72Br were studied with the EUROBALL III spectrometer using the 40Ca(40Ca,alpha3p1n) reaction. The negative-parity band observed in this experiment displays a signature inversion around spin I = 16. The interpretation within the cranked Nilsson-Strutinsky approach shows that this signature pattern is a signal of a substantial triaxial shape change with increasing spin where the nucleus evolves from a triaxial shape with rotation about the intermediate axis at low spin through a collective prolate shape to a triaxial shape but with rotation about the shortest principal axis at high spin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA