Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805281

RESUMO

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Assuntos
Fatores de Transcrição Forkhead , Subunidade alfa de Receptor de Interleucina-2 , RNA Longo não Codificante , Linfócitos T Reguladores , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Diferenciação Celular/genética
2.
Clin Immunol ; 264: 110261, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788884

RESUMO

Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Células Th17 , Humanos , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Elementos Facilitadores Genéticos/genética , Células Th17/imunologia , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Sítios de Ligação/genética , Sistemas CRISPR-Cas
3.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35880426

RESUMO

Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.


Assuntos
Benchmarking , Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , RNA , RNA-Seq , Análise de Sequência de RNA/métodos
4.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37624916

RESUMO

MOTIVATION: Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be modelled using trajectory inference methods. While tremendous effort has been put into designing these methods, inferring accurate trajectories automatically remains difficult. Therefore, the standard approach involves testing different trajectory inference methods and picking the trajectory giving the most biologically sensible model. As the default parameters are often suboptimal, their tuning requires methodological expertise. RESULTS: We introduce Totem, an open-source, easy-to-use R package designed to facilitate inference of tree-shaped trajectories from single-cell data. Totem generates a large number of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity enables to visually pinpoint branching points and milestones relevant to the trajectory. Furthermore, testing different trajectories with Totem is fast, easy, and does not require in-depth methodological knowledge. AVAILABILITY AND IMPLEMENTATION: Totem is available as an R package at https://github.com/elolab/Totem.


Assuntos
Diferenciação Celular , Análise por Conglomerados
5.
Nucleic Acids Res ; 50(9): 4938-4958, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35511484

RESUMO

Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Antígeno 2 Relacionado a Fos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Th17 , Fator de Transcrição AP-1 , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Células Th17/citologia , Células Th17/metabolismo , Fator de Transcrição AP-1/metabolismo
6.
Bioinformatics ; 38(5): 1328-1335, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34888622

RESUMO

MOTIVATION: Computational models are needed to infer a representation of the cells, i.e. a trajectory, from single-cell RNA-sequencing data that model cell differentiation during a dynamic process. Although many trajectory inference methods exist, their performance varies greatly depending on the dataset and hence there is a need to establish more accurate, better generalizable methods. RESULTS: We introduce scShaper, a new trajectory inference method that enables accurate linear trajectory inference. The ensemble approach of scShaper generates a continuous smooth pseudotime based on a set of discrete pseudotimes. We demonstrate that scShaper is able to infer accurate trajectories for a variety of trigonometric trajectories, including many for which the commonly used principal curves method fails. A comprehensive benchmarking with state-of-the-art methods revealed that scShaper achieved superior accuracy of the cell ordering and, in particular, the differentially expressed genes. Moreover, scShaper is a fast method with few hyperparameters, making it a promising alternative to the principal curves method for linear pseudotemporal ordering. AVAILABILITY AND IMPLEMENTATION: scShaper is available as an R package at https://github.com/elolab/scshaper. The test data are available at https://doi.org/10.5281/zenodo.5734488. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise da Expressão Gênica de Célula Única , Software , Análise de Célula Única/métodos , Diferenciação Celular/genética , Sequenciamento do Exoma , Análise de Sequência de RNA/métodos
7.
Diabetologia ; 65(5): 844-860, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35142878

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is a chronic autoimmune disease of complex aetiology, including a potential role for epigenetic regulation. Previous epigenomic studies focused mainly on clinically diagnosed individuals. The aim of the study was to assess early DNA methylation changes associated with type 1 diabetes already before the diagnosis or even before the appearance of autoantibodies. METHODS: Reduced representation bisulphite sequencing (RRBS) was applied to study DNA methylation in purified CD4+ T cell, CD8+ T cell and CD4-CD8- cell fractions of 226 peripheral blood mononuclear cell samples longitudinally collected from seven type 1 diabetes-specific autoantibody-positive individuals and control individuals matched for age, sex, HLA risk and place of birth. We also explored correlations between DNA methylation and gene expression using RNA sequencing data from the same samples. Technical validation of RRBS results was performed using pyrosequencing. RESULTS: We identified 79, 56 and 45 differentially methylated regions in CD4+ T cells, CD8+ T cells and CD4-CD8- cell fractions, respectively, between type 1 diabetes-specific autoantibody-positive individuals and control participants. The analysis of pre-seroconversion samples identified DNA methylation signatures at the very early stage of disease, including differential methylation at the promoter of IRF5 in CD4+ T cells. Further, we validated RRBS results using pyrosequencing at the following CpG sites: chr19:18118304 in the promoter of ARRDC2; chr21:47307815 in the intron of PCBP3; and chr14:81128398 in the intergenic region near TRAF3 in CD4+ T cells. CONCLUSIONS/INTERPRETATION: These preliminary results provide novel insights into cell type-specific differential epigenetic regulation of genes, which may contribute to type 1 diabetes pathogenesis at the very early stage of disease development. Should these findings be validated, they may serve as a potential signature useful for disease prediction and management.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 1 , Autoanticorpos/genética , Autoimunidade/genética , Linfócitos T CD8-Positivos , Criança , Ilhas de CpG , Metilação de DNA/genética , Diabetes Mellitus Tipo 1/genética , Epigênese Genética/genética , Humanos , Leucócitos Mononucleares
8.
Chromosoma ; 130(2-3): 215-234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331109

RESUMO

The Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila. Quantitative live imaging demonstrates that ASH1 requires AT hooks and the BAH domain but not the SET domain for full chromatin binding in metaphase, and that none of these domains are essential for interphase binding. Genetic experiments show that disruptions of the AT hooks and the BAH domain together, but not deletion of the SET domain alone, are lethal. Transcriptional profiling demonstrates that intact ASH1 AT hooks and the BAH domain are required to maintain expression levels of a specific set of genes, including several involved in cell identity and survival. This study identifies in vivo roles for specific ASH1 domains in mitotic binding, gene regulation, and survival that are distinct from its functions as a histone methyltransferase.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila/citologia , Fatores de Transcrição , Motivos AT-Hook , Animais , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Domínios PR-SET , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Bioinformatics ; 37(8): 1107-1114, 2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-33151294

RESUMO

MOTIVATION: Single-cell RNA-seq allows researchers to identify cell populations based on unsupervised clustering of the transcriptome. However, subpopulations can have only subtle transcriptomic differences and the high dimensionality of the data makes their identification challenging. RESULTS: We introduce ILoReg, an R package implementing a new cell population identification method that improves identification of cell populations with subtle differences through a probabilistic feature extraction step that is applied before clustering and visualization. The feature extraction is performed using a novel machine learning algorithm, called iterative clustering projection (ICP), that uses logistic regression and clustering similarity comparison to iteratively cluster data. Remarkably, ICP also manages to integrate feature selection with the clustering through L1-regularization, enabling the identification of genes that are differentially expressed between cell populations. By combining solutions of multiple ICP runs into a single consensus solution, ILoReg creates a representation that enables investigating cell populations with a high resolution. In particular, we show that the visualization of ILoReg allows segregation of immune and pancreatic cell populations in a more pronounced manner compared with current state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: ILoReg is available as an R package at https://bioconductor.org/packages/ILoReg. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Transcriptoma , Análise por Conglomerados , Perfilação da Expressão Gênica , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única , Software , Sequenciamento do Exoma
10.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093387

RESUMO

Multiple mechanisms have been suggested to confer to the pathophysiology of metabolic syndrome (MetS), however despite great interest from the scientific community, the exact contribution of each of MetS risk factors still remains unclear. The present study aimed to investigate molecular signatures in peripheral blood of individuals affected by MetS and different degrees of obesity. Metabolic health of 1204 individuals from 1000PLUS cohort was assessed, and 32 subjects were recruited to four study groups: MetS lean, MetS obese, "healthy obese", and healthy lean. Whole-blood transcriptome next generation sequencing with functional data analysis were carried out. MetS obese and MetS lean study participants showed the upregulation of genes involved in inflammation and coagulation processes: granulocyte adhesion and diapedesis (p < 0.0001, p = 0.0063), prothrombin activation pathway (p = 0.0032, p = 0.0091), coagulation system (p = 0.0010, p = 0.0155). The results for "healthy obese" indicate enrichment in molecules associated with protein synthesis (p < 0.0001), mitochondrial dysfunction (p < 0.0001), and oxidative phosphorylation (p < 0.0001). Our results suggest that MetS is related to the state of inflammation and vascular system changes independent of excess body weight. Furthermore, "healthy obese", despite not fulfilling the criteria for MetS diagnosis, seems to display an intermediate state with a lower degree of metabolic abnormalities, before they proceed to a full blown MetS.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Transcriptoma , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Feminino , Humanos , Masculino , Síndrome Metabólica/genética , Pessoa de Meia-Idade , Obesidade/genética
11.
Nat Methods ; 13(12): 997-1000, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27749839

RESUMO

We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Complexos Multiproteicos/biossíntese , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Virais/biossíntese , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Técnicas de Cultura de Células , Transferência Ressonante de Energia de Fluorescência/métodos , Código Genético , Vetores Genéticos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Plasmídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Proteínas Virais/química , Proteínas Virais/genética
12.
EMBO Rep ; 17(11): 1624-1640, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27702987

RESUMO

The HOIP ubiquitin E3 ligase generates linear ubiquitin chains by forming a complex with HOIL-1L and SHARPIN in mammals. Here, we provide the first evidence of linear ubiquitination induced by a HOIP orthologue in Drosophila We identify Drosophila CG11321, which we named Linear Ubiquitin E3 ligase (LUBEL), and find that it catalyzes linear ubiquitination in vitro We detect endogenous linear ubiquitin chain-derived peptides by mass spectrometry in Drosophila Schneider 2 cells and adult flies. Furthermore, using CRISPR/Cas9 technology, we establish linear ubiquitination-defective flies by mutating residues essential for the catalytic activity of LUBEL Linear ubiquitination signals accumulate upon heat shock in flies. Interestingly, flies with LUBEL mutations display reduced survival and climbing defects upon heat shock, which is also observed upon specific LUBEL depletion in muscle. Thus, LUBEL is involved in the heat response by controlling linear ubiquitination in flies.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/fisiologia , Resposta ao Choque Térmico/fisiologia , Proteínas de Ligação a RNA/genética , Animais , Catálise , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Proteínas de Drosophila/metabolismo , Mutação , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Circ Res ; 117(3): 289-99, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085133

RESUMO

RATIONALE: Hyperlipidemia and type 2 diabetes mellitus (T2DM) severely impair adaptive vascular growth responses in ischemic muscles. This is largely attributed to dysregulated gene expression, although details of the changes are unknown. OBJECTIVE: To define the role of promoter methylation in adaptive vascular growth in hyperlipidemia (LDLR(-/-)ApoB(100/100)) and T2DM (IGF-II/LDLR(-/-)ApoB(100/100)) mouse models of hindlimb ischemia. METHODS AND RESULTS: Unilateral hindlimb ischemia was induced by ligating femoral artery. Perfusion was assessed using ultrasound, and capillary and arteriole parameters were assessed using immunohistochemistry. Genome-wide methylated DNA sequencing was performed with DNA isolated from ischemic muscle, tissue macrophages (Mϕs), and endothelial cells. Compared with the controls, hyperlipidemia and T2DM mice showed impaired perfusion recovery, which was associated with impaired angiogenesis and arteriogenesis. Genome-wide proximal promoter DNA methylation analysis suggested differential patterns of methylation in Mϕ genes in ischemic muscles. Classically activated M1-Mϕ gene promoters, including Cfb, Serping1, and Tnfsf15, were significantly hypomethylated, whereas alternatively activated M2-Mϕ gene promoters, including Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18, and Fes, were significantly hypermethylated in Mϕs isolated from hyperlipidemia and T2DM ischemic muscles compared with controls. These results combined with mRNA expression and immunohistochemistry showed the predominance of proinflammatory M1-Mϕs, compared with anti-inflammatory and proangiogenic M2-Mϕs in hyperlipidemia and T2DM ischemic muscles. CONCLUSIONS: We found significant promoter hypomethylation of genes typical for proinflammatory M1-Mϕs and hypermethylation of anti-inflammatory, proangiogenic M2-Mϕ genes in hyperlipidemia and T2DM ischemic muscles. Epigenetic alterations modify Mϕ phenotype toward proinflammatory M1 as opposed to anti-inflammatory, proangiogenic, and tissue repair M2 phenotype, which may contribute to the impaired adaptive vascular growth under these pathological conditions.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Regulação da Expressão Gênica/genética , Membro Posterior/irrigação sanguínea , Hiperlipidemias/genética , Isquemia/patologia , Macrófagos/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/genética , Regiões Promotoras Genéticas , Traumatismo por Reperfusão/genética , Adaptação Fisiológica , Animais , Apolipoproteína B-100/genética , Arteríolas/patologia , Capilares/patologia , Gorduras na Dieta/toxicidade , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Membro Posterior/diagnóstico por imagem , Inflamação , Isquemia/diagnóstico por imagem , Isquemia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , Receptores de LDL/deficiência , Reperfusão , Traumatismo por Reperfusão/patologia , Ultrassonografia
14.
BMC Genomics ; 14: 870, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24325588

RESUMO

BACKGROUND: Lichens are symbiotic organisms with a fungal and an algal or a cyanobacterial partner. Lichens inhabit some of the harshest climates on earth and most lichen species are desiccation-tolerant. Lichen desiccation-tolerance has been studied at the biochemical level and through proteomics, but the underlying molecular genetic mechanisms remain largely unexplored. The objective of our study was to examine the effects of dehydration and rehydration on the gene expression of Cladonia rangiferina. RESULTS: Samples of C. rangiferina were collected at several time points during both the dehydration and rehydration process and the gene expression intensities were measured using a custom DNA microarray. Several genes, which were differentially expressed in one or more time points, were identified. The microarray results were validated using qRT-PCR analysis. Enrichment analysis of differentially expressed transcripts was also performed to identify the Gene Ontology terms most associated with the rehydration and dehydration process. CONCLUSIONS: Our data identify differential expression patterns for hundreds of genes that are modulated during dehydration and rehydration in Cladonia rangiferina. These dehydration and rehydration events clearly differ from each other at the molecular level and the largest changes to gene expression are observed within minutes following rehydration. Distinct changes are observed during the earliest stage of rehydration and the mechanisms not appear to be shared with the later stages of wetting or with drying. Several of the most differentially expressed genes are similar to genes identified in previous studies that have investigated the molecular mechanisms of other desiccation-tolerant organisms. We present here the first microarray experiment for any lichen species and have for the first time studied the genetic mechanisms behind lichen desiccation-tolerance at the whole transcriptome level.


Assuntos
Desidratação/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Líquens/genética , Transcriptoma , Análise por Conglomerados , Líquens/metabolismo , Anotação de Sequência Molecular
15.
Microbiology (Reading) ; 159(Pt 12): 2513-2523, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025607

RESUMO

Ciprofloxacin resistance is common both among animal and human Campylobacter jejuni isolates. Resistant isolates are shown to persist even without selection pressure. To obtain further insight on effects of ciprofloxacin exposure on C. jejuni we compared transcriptional responses of both C. jejuni wild-type strain 81-176 (ciprofloxacin MIC 0.125 mg l(-1)) and its intermediate ciprofloxacin-resistant variant P3 (Asp90→Asn in GyrA) in the absence and presence of ciprofloxacin. Further, we sequenced the genome of P3 and compared the sequence with that of wild-type 81-176. One hour of exposure to 8 mg l(-1) of ciprofloxacin did not decrease the viability of the parent strain 81-176. Transcriptional analysis revealed that ciprofloxacin exposure caused changes in the expression of genes involved in DNA replication and repair. While in the wild-type the exposure caused downregulation of several genes involved in the control of DNA replication and recombination, the genes controlling nucleotide excision repair and DNA modification were upregulated in both the wild-type and P3. In addition, we observed that ciprofloxacin exposure caused upregulation of genes responsible for damage recognition in base excision repair in P3. In contrast, without ciprofloxacin exposure, DNA repair mechanisms were substantially downregulated in P3. The genome sequence of P3 compared to that of the 81-176 parental strain had three non-synonymous substitutions and a deletion, revealing that the resistant variant had maintained genetic integrity. In conclusion, enhanced DNA repair mechanisms under ciprofloxacin exposure might explain maintenance of genomic integrity in ciprofloxacin-resistant variant P3.


Assuntos
Antibacterianos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Ciprofloxacina/farmacologia , Reparo do DNA/efeitos dos fármacos , Campylobacter jejuni/genética , Replicação do DNA/efeitos dos fármacos , Perfilação da Expressão Gênica , Genoma Bacteriano , Mutação , Recombinação Genética/efeitos dos fármacos , Análise de Sequência de DNA
16.
Cell Rep ; 42(12): 113469, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039135

RESUMO

The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Animais , Camundongos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Hematopoese , Diferenciação Celular , Células Th17/metabolismo
17.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894277

RESUMO

Non-small cell lung cancer is the predominant form of lung cancer and is associated with a poor prognosis. MiRNAs implicated in cancer initiation and progression can be easily detected in liquid biopsy samples and have the potential to serve as non-invasive biomarkers. In this study, we employed next-generation sequencing to globally profile miRNAs in serum samples from 71 early-stage NSCLC patients and 47 non-cancerous pulmonary condition patients. Preliminary analysis of differentially expressed miRNAs revealed 28 upregulated miRNAs in NSCLC compared to the control group. Functional enrichment analyses unveiled their involvement in NSCLC signaling pathways. Subsequently, we developed a gradient-boosting decision tree classifier based on 2588 miRNAs, which demonstrated high accuracy (0.837), sensitivity (0.806), and specificity (0.859) in effectively distinguishing NSCLC from non-cancerous individuals. Shapley Additive exPlanations analysis improved the model metrics by identifying the top 15 miRNAs with the strongest discriminatory value, yielding an AUC of 0.96 ± 0.04, accuracy of 0.896, sensitivity of 0.884, and specificity of 0.903. Our study establishes the potential utility of a non-invasive serum miRNA signature as a supportive tool for early detection of NSCLC while also shedding light on dysregulated miRNAs in NSCLC biology. For enhanced credibility and understanding, further validation in an independent cohort of patients is warranted.

18.
Pain ; 164(2): e103-e115, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638307

RESUMO

ABSTRACT: Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.


Assuntos
Lisofosfatidilcolinas , Dor , Humanos , Lisofosfatidilcolinas/toxicidade
19.
BMC Genomics ; 13: 575, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110403

RESUMO

BACKGROUND: Lichens are symbiotic organisms that have a remarkable ability to survive in some of the most extreme terrestrial climates on earth. Lichens can endure frequent desiccation and wetting cycles and are able to survive in a dehydrated molecular dormant state for decades at a time. Genetic resources have been established in lichen species for the study of molecular systematics and their taxonomic classification. No lichen species have been characterised yet using genomics and the molecular mechanisms underlying the lichen symbiosis and the fundamentals of desiccation tolerance remain undescribed. We report the characterisation of a transcriptome of the grey reindeer lichen, Cladonia rangiferina, using high-throughput next-generation transcriptome sequencing and traditional Sanger EST sequencing data. RESULTS: Altogether 243,729 high quality sequence reads were de novo assembled into 16,204 contigs and 49,587 singletons. The genome of origin for the sequences produced was predicted using Eclat with sequences derived from the axenically grown symbiotic partners used as training sequences for the classification model. 62.8% of the sequences were classified as being of fungal origin while the remaining 37.2% were predicted as being of algal origin. The assembled sequences were annotated by BLASTX comparison against a non-redundant protein sequence database with 34.4% of the sequences having a BLAST match. 29.3% of the sequences had a Gene Ontology term match and 27.9% of the sequences had a domain or structural match following an InterPro search. 60 KEGG pathways with more than 10 associated sequences were identified. CONCLUSIONS: Our results present a first transcriptome sequencing and de novo assembly for a lichen species and describe the ongoing molecular processes and the most active pathways in C. rangiferina. This brings a meaningful contribution to publicly available lichen sequence information. These data provide a first glimpse into the molecular nature of the lichen symbiosis and characterise the transcriptional space of this remarkable organism. These data will also enable further studies aimed at deciphering the genetic mechanisms behind lichen desiccation tolerance.


Assuntos
Proteínas de Algas/genética , Etiquetas de Sequências Expressas , Genes Fúngicos , Genes de Plantas , Genoma , Líquens/genética , Transcriptoma , Dessecação , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Estresse Fisiológico/genética , Simbiose
20.
J Cell Biochem ; 113(12): 3843-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22821512

RESUMO

The Sin3A-associated proteins SAP30 and SAP30L share 70% sequence identity and are part of the multiprotein Sin3A corepressor complex. They participate in gene repression events by linking members of the complex and stabilizing interactions among the protein members as well as between proteins and DNA. While most organisms have both SAP30 and SAP30L, the zebrafish is exceptional because it only has SAP30L. Here we demonstrate that SAP30L is expressed ubiquitously in embryonic and adult zebrafish tissues. Knockdown of SAP30L using morpholino-mediated technology resulted in a morphant phenotype manifesting as cardiac insufficiency and defective hemoglobinization of red blood cells. A microarray analysis of gene expression in SAP30L morphant embryos revealed changes in the expression of genes involved in regulation of transcription, TGF-beta signaling, Wnt-family transcription factors, and nuclear genes encoding mitochondrial proteins. The expression of the heart-specific nkx2.5 gene was markedly down-regulated in SAP30L morphants, and the cardiac phenotype could be partially rescued by nkx2.5 mRNA. In addition, changes were detected in the expression of genes known to be important in hemoglobin synthesis and erythropoiesis. Our results demonstrate that SAP30L regulates several transcriptional pathways in zebrafish embryos and is involved in the development of cardiac and hematopoietic systems.


Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Hematopoese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Eritrócitos/metabolismo , Eritrócitos/patologia , Técnicas de Silenciamento de Genes , Coração/anatomia & histologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA