RESUMO
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Assuntos
Microcefalia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células HEK293 , Serina-Treonina Quinases TORRESUMO
SCY1-like protein 2 (SCYL2) is a member of the SCY1-like pseudokinase family which regulates secretory protein trafficking. It plays a crucial role in the nervous system by suppressing excitotoxicity in the developing brain. Scyl2 knockout mice have excess prenatal mortality and survivors show severe neurological dysfunction. Bi-allelic loss-of-function (LOF) variants in SCYL2 were recently associated with arthrogryposis multiplex congenita-4 (AMC4) following the report of 6 individuals from two consanguineous unrelated families. The AMC4 phenotype described included severe arthrogryposis, corpus callosum agenesis, epilepsy and frequently, early death. We describe here two additional similarly affected individuals with AMC4, including one diagnosed in the prenatal period, with bi-allelic LOF variants in SCYL2, and two individuals homozygous for missense variants in the protein kinase domain of SCYL2 and presenting with developmental delay only. Our study confirms the association of SCYL2 with AMC4 and suggests a milder phenotype can occur, extending the phenotypic spectrum of autosomal recessive SCYL2-related disorders.
RESUMO
Obtaining a rapid etiological diagnosis for infants with early-onset rare diseases remains a major challenge. These diseases often have a severe presentation and unknown prognosis, and the genetic causes are very heterogeneous. In a French hospital network, we assessed the feasibility of performing accelerated trio-genome sequencing (GS) with limited additional costs by integrating urgent requests into the routine workflow. In addition to evaluating our capacity for such an approach, this prospective multicentre pilot study was designed to identify pitfalls encountered during its implementation. Over 14 months, we included newborns and infants hospitalized in neonatal or paediatric intensive care units with probable genetic disease and in urgent need for etiological diagnosis to guide medical care. The duration of each step and the pitfalls were recorded. We analysed any deviation from the planned schedule and identified obstacles. Trio-GS was performed for 37 individuals, leading to a molecular diagnosis in 18/37 (49%), and 21/37 (57%) after reanalysis. Corrective measures and protocol adaptations resulted in a median duration of 42 days from blood sampling to report. Accelerated trio-GS is undeniably valuable for individuals in an urgent care context. Such a circuit should coexist with a rapid or ultra-rapid circuit, which, although more expensive, can be used in particularly urgent cases. The drop in GS costs should result in its generalized use for diagnostic purposes and lead to a reduction of the costs of rapid GS.
Assuntos
Hospitais , Unidades de Terapia Intensiva , Criança , Estudos de Viabilidade , Humanos , Lactente , Recém-Nascido , Projetos Piloto , Estudos ProspectivosRESUMO
Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.