Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 63(5): 852-64, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546790

RESUMO

Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Helicases/genética , DNA/genética , Proteínas de Escherichia coli/genética , Plasmídeos/metabolismo , RNA Bacteriano/genética , Sítios de Ligação , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Clonagem Molecular , DNA/química , DNA/metabolismo , Clivagem do DNA , DNA Helicases/química , DNA Helicases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Plasmídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
2.
Mol Cell ; 58(1): 60-70, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25752578

RESUMO

Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses-interference and priming-remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , DNA Viral/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/imunologia , Sequência de Bases , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/metabolismo , Colífagos/química , Colífagos/genética , DNA Viral/genética , Escherichia coli/imunologia , Escherichia coli/virologia , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Dados de Sequência Molecular , Mutação , Ligação Proteica
3.
Mol Cell ; 46(5): 595-605, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22521689

RESUMO

The prokaryotic CRISPR/Cas immune system is based on genomic loci that contain incorporated sequence tags from viruses and plasmids. Using small guide RNA molecules, these sequences act as a memory to reject returning invaders. Both the Cascade ribonucleoprotein complex and the Cas3 nuclease/helicase are required for CRISPR interference in Escherichia coli, but it is unknown how natural target DNA molecules are recognized and neutralized by their combined action. Here we show that Cascade efficiently locates target sequences in negatively supercoiled DNA, but only if these are flanked by a protospacer-adjacent motif (PAM). PAM recognition by Cascade exclusively involves the crRNA-complementary DNA strand. After Cascade-mediated R loop formation, the Cse1 subunit recruits Cas3, which catalyzes nicking of target DNA through its HD-nuclease domain. The target is then progressively unwound and cleaved by the joint ATP-dependent helicase activity and Mg(2+)-dependent HD-nuclease activity of Cas3, leading to complete target DNA degradation and invader neutralization.


Assuntos
DNA Helicases/fisiologia , DNA Super-Helicoidal/metabolismo , Escherichia coli K12/imunologia , Proteínas de Escherichia coli/fisiologia , Modelos Imunológicos , Proteínas Associadas a CRISPR , DNA Helicases/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico
4.
Nucleic Acids Res ; 46(19): 10395-10404, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30107450

RESUMO

Prokaryotes use primed CRISPR adaptation to update their memory bank of spacers against invading genetic elements that have escaped CRISPR interference through mutations in their protospacer target site. We previously observed a trend that nucleotide-dependent mismatches between crRNA and the protospacer strongly influence the efficiency of primed CRISPR adaptation. Here we show that guanine-substitutions in the target strand of the protospacer are highly detrimental to CRISPR interference and interference-dependent priming, while cytosine-substitutions are more readily tolerated. Furthermore, we show that this effect is based on strongly decreased binding affinity of the effector complex Cascade for guanine-mismatched targets, while cytosine-mismatched targets only minimally affect target DNA binding. Structural modeling of Cascade-bound targets with mismatches shows that steric clashes of mismatched guanines lead to unfavorable conformations of the RNA-DNA duplex. This effect has strong implications for the natural selection of target site mutations that lead to effective escape from type I CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , Citosina/química , Escherichia coli/genética , Guanina/química , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , Pareamento de Bases , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosina/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/metabolismo , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo
5.
Nucleic Acids Res ; 46(2): 873-885, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29253268

RESUMO

Prokaryotes encode various host defense systems that provide protection against mobile genetic elements. Restriction-modification (R-M) and CRISPR-Cas systems mediate host defense by sequence specific targeting of invasive DNA. T-even bacteriophages employ covalent modifications of nucleobases to avoid binding and therefore cleavage of their DNA by restriction endonucleases. Here, we describe that DNA glucosylation of bacteriophage genomes affects interference of some but not all CRISPR-Cas systems. We show that glucosyl modification of 5-hydroxymethylated cytosines in the DNA of bacteriophage T4 interferes with type I-E and type II-A CRISPR-Cas systems by lowering the affinity of the Cascade and Cas9-crRNA complexes for their target DNA. On the contrary, the type V-A nuclease Cas12a (also known as Cpf1) is not impaired in binding and cleavage of glucosylated target DNA, likely due to a more open structural architecture of the protein. Our results suggest that CRISPR-Cas systems have contributed to the selective pressure on phages to develop more generic solutions to escape sequence specific host defense systems.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA Viral/metabolismo , Fagos T/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Sequência de Bases , DNA Viral/genética , Escherichia coli/genética , Escherichia coli/virologia , Ligação Proteica , Fagos T/genética
6.
Proc Natl Acad Sci U S A ; 111(16): E1629-38, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711427

RESUMO

Prokaryotes encode adaptive immune systems, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated), to provide resistance against mobile invaders, such as viruses and plasmids. Host immunity is based on incorporation of invader DNA sequences in a memory locus (CRISPR), the formation of guide RNAs from this locus, and the degradation of cognate invader DNA (protospacer). Invaders can escape type I-E CRISPR-Cas immunity in Escherichia coli K12 by making point mutations in the seed region of the protospacer or its adjacent motif (PAM), but hosts quickly restore immunity by integrating new spacers in a positive-feedback process termed "priming." Here, by using a randomized protospacer and PAM library and high-throughput plasmid loss assays, we provide a systematic analysis of the constraints of both direct interference and subsequent priming in E. coli. We have defined a high-resolution genetic map of direct interference by Cascade and Cas3, which includes five positions of the protospacer at 6-nt intervals that readily tolerate mutations. Importantly, we show that priming is an extremely robust process capable of using degenerate target regions, with up to 13 mutations throughout the PAM and protospacer region. Priming is influenced by the number of mismatches, their position, and is nucleotide dependent. Our findings imply that even outdated spacers containing many mismatches can induce a rapid primed CRISPR response against diversified or related invaders, giving microbes an advantage in the coevolutionary arms race with their invaders.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli K12/genética , Escherichia coli K12/imunologia , Pareamento Incorreto de Bases/genética , Sequência de Bases , Bases de Dados Genéticas , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Mutação/genética , Motivos de Nucleotídeos/genética , Plasmídeos/genética , RNA Bacteriano/genética
7.
CRISPR J ; 5(4): 571-585, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35856642

RESUMO

Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/metabolismo , DNA Complementar , Humanos , Oligonucleotídeos/genética
8.
Nat Biotechnol ; 37(12): 1471-1477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740839

RESUMO

Type I CRISPR-Cas systems are the most abundant adaptive immune systems in bacteria and archaea1,2. Target interference relies on a multi-subunit, RNA-guided complex called Cascade3,4, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation5-7. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex. Here, we fuse Cascade to the dimerization-dependent, non-specific FokI nuclease domain8-11 and achieve RNA-guided gene editing in multiple human cell lines with high specificity and efficiencies of up to ~50%. FokI-Cascade can be reconstituted via an optimized two-component expression system encoding the CRISPR-associated (Cas) proteins on a single polycistronic vector and the guide RNA (gRNA) on a separate plasmid. Expression of the full Cascade-Cas3 complex in human cells resulted in targeted deletions of up to ~200 kb in length. Our work demonstrates that highly abundant, previously untapped type I CRISPR-Cas systems can be harnessed for genome engineering applications in eukaryotic cells.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Escherichia coli , Genoma/genética , Células HEK293 , Humanos , Modelos Genéticos
9.
Methods Mol Biol ; 1311: 171-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981473

RESUMO

The Electrophoretic Mobility Shift Assay is a straightforward and inexpensive method for the determination and quantification of protein-nucleic acid interactions. It relies on the different mobility of free and protein-bound nucleic acid in a gel matrix during electrophoresis. Nucleic acid affinities of crRNA-Cas complexes can be quantified by calculating the dissociation constant (Kd). Here, we describe how two types of EMSA assays are performed using the Cascade ribonucleoprotein complex from Escherichia coli as an example.


Assuntos
Sistemas CRISPR-Cas , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas de Escherichia coli/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Escherichia coli/genética , Processamento de Imagem Assistida por Computador , Oligonucleotídeos/metabolismo , Plasmídeos/genética , Ribonucleoproteínas/genética , Coloração e Rotulagem
10.
Trends Microbiol ; 22(2): 74-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24440013

RESUMO

Small guide RNAs play important roles in cellular processes such as regulation of gene expression and host defense against invading nucleic acids. The mode of action of small RNAs relies on protein-assisted base pairing of the guide RNA with target mRNA or DNA to interfere with their transcription, translation, or replication. Several unrelated classes of small noncoding RNAs have been identified including eukaryotic RNA silencing-associated small RNAs, prokaryotic small regulatory RNAs (sRNAs), and prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats) RNAs (crRNAs). All three groups identify their target sequence by base pairing after finding it in a pool of millions of other nucleotide sequences in the cell. In this complicated target search process, a region of 6-12 nucleotides (nt) of the small RNA termed the 'seed' plays a critical role. We review the concept of seed sequences and discuss its importance for initial target recognition and interference.


Assuntos
Pareamento de Bases , DNA/genética , DNA/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA