Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(9): e202117058, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34962341

RESUMO

2D metal-organic-framework (MOF) based composites have emerged as promising candidates for electrocatalysis due to their high structural flexibility and fully exposed active sites. Herein, a freestanding metal-organic layer (MOL) with a 2D kgd (kagome dual) lattice was constructed with abundant surface oxygenate groups serving as anchoring sites to immobilize diverse guests. Taking Bi as an example, tetragonal Bi2 O3 nanowires can be uniformly grown on MOLs after solvothermal treatment, the structural evolution of which was followed by ex situ electron microscopy. The as-prepared Bi2 O3 /MOL exhibits excellent CO2 electroreduction activity towards formate reaching a specific current of 2.3 A mgBi -1 and Faradaic efficiencies of over 85 % with a wide potential range from -0.87 to -1.17 V, far surpassing Bi2 O3 /UiO (a 3D Zr6 -oxo based MOF) and Bi2 O3 /AB (Acetylene Black). Such a post-synthetic modification strategy can be flexibly extended to develop versatile MOL composites, highlighting the superiority of optimizing MOL-based composites for electrocatalysis.

2.
Chemistry ; 27(48): 12430-12436, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34153154

RESUMO

The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.

3.
Small ; 16(23): e2000756, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32390324

RESUMO

The formation of a stable solid electrolyte interphase (SEI) is a prerogative for functional lithium metal batteries. Herein, the formation and evolution of such SEI in contact with glyme-based electrolytes is investigated under open circuit voltage and several constant current cycles. An important conclusion of the study is that Lix Sy species are nonbeneficial SEI components, compared to the Li3 N counterpart. In addition, chemical (X-ray photoelectron spectroscopy, XPS) and electrochemical (impedance spectroscopy) evolution of SEI under galvanostatic conditions are comprehensively tracked.

4.
Phys Rev Lett ; 125(17): 176403, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156643

RESUMO

At very high doping levels the van Hove singularity in the π^{*} band of graphene becomes occupied and exotic ground states possibly emerge, driven by many-body interactions. Employing a combination of ytterbium intercalation and potassium adsorption, we n dope epitaxial graphene on silicon carbide past the π^{*} van Hove singularity, up to a charge carrier density of 5.5×10^{14} cm^{-2}. This regime marks the unambiguous completion of a Lifshitz transition in which the Fermi surface topology has evolved from two electron pockets into a giant hole pocket. Angle-resolved photoelectron spectroscopy confirms these changes to be driven by electronic structure renormalizations rather than a rigid band shift. Our results open up the previously unreachable beyond-van-Hove regime in the phase diagram of epitaxial graphene, thereby accessing an unexplored landscape of potential exotic phases in this prototype two-dimensional material.

5.
Nat Commun ; 15(1): 2541, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514672

RESUMO

Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb1+xSe2. We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation.

6.
ACS Appl Mater Interfaces ; 14(14): 16147-16156, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357146

RESUMO

Realization of all-solid-state batteries combined with metallic Li/Na is still hindered due to the unstable interface between the alkali metal and solid electrolytes, especially for highly promising thiophosphate materials. Artificial and uniform solid-electrolyte interphases (SEIs), serving as thin ion-conducting films, have been considered as a strategy to overcome the issues of such reactive interfaces. Here, we synthesized sulfide-based artificial SEIs (LixSy and NaxSy) on Li and Na by solid/gas reaction between the alkali metal and S vapor. The synthesized films are carefully characterized with various chemical/electrochemical techniques. We show that these artificial SEIs are not beneficial from an application point of view since they either contribute to additional resistances (Li) or do not prevent reactions at the alkali metal/electrolyte interface (Na). We show that NaxSy is more porous than LixSy, supported by (i) its rough morphology observed by focused ion beam-scanning electron microscopy, (ii) the rapid decrease of Rinterface (interfacial resistance) in NaxSy-covered-Na symmetric cells with liquid electrolyte upon aging under open-circuit potential, and (iii) the increase of Rinterface in NaxSy-covered-Na solid-state symmetric cells with Na3PS4 electrolyte. The porous SEI allows the penetration of liquid electrolyte or alkali metal creep through its pores, resulting in a continuous chemical reaction. Hence, porosity of SEIs in general should be carefully taken into account in the application of batteries containing both liquid electrolyte and solid electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA