Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823390

RESUMO

Significant efforts in wet and dry laboratories are devoted to resolving molecular structures. In particular, computational methods can now compute thousands of tertiary structures that populate the structure space of a protein molecule of interest. These advances are now allowing us to turn our attention to analysis methodologies that are able to organize the computed structures in order to highlight functionally relevant structural states. In this paper, we propose a methodology that leverages community detection methods, designed originally to detect communities in social networks, to organize computationally probed protein structure spaces. We report a principled comparison of such methods along several metrics on proteins of diverse folds and lengths. We present a rigorous evaluation in the context of decoy selection in template-free protein structure prediction. The results make the case that network-based community detection methods warrant further investigation to advance analysis of protein structure spaces for automated selection of functionally relevant structures.


Assuntos
Algoritmos , Biologia Computacional , Modelos Moleculares , Proteínas , Conformação Proteica , Proteínas/química , Proteínas/genética
2.
Biomolecules ; 12(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883567

RESUMO

Over the past decade, Markov State Models (MSM) have emerged as powerful methodologies to build discrete models of dynamics over structures obtained from Molecular Dynamics trajectories. The identification of macrostates for the MSM is a central decision that impacts the quality of the MSM but depends on both the selected representation of a structure and the clustering algorithm utilized over the featurized structures. Motivated by a large molecular system in its free and bound state, this paper investigates two directions of research, further reducing the representation dimensionality in a non-parametric, data-driven manner and including more structures in the computation. Rigorous evaluation of the quality of obtained MSMs via various statistical tests in a comparative setting firmly shows that fewer dimensions and more structures result in a better MSM. Many interesting findings emerge from the best MSM, advancing our understanding of the relationship between antibody dynamics and antibody-antigen recognition.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Análise por Conglomerados , Cadeias de Markov
3.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1670-1682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33400654

RESUMO

A central challenge in protein modeling research and protein structure prediction in particular is known as decoy selection. The problem refers to selecting biologically-active/native tertiary structures among a multitude of physically-realistic structures generated by template-free protein structure prediction methods. Research on decoy selection is active. Clustering-based methods are popular, but they fail to identify good/near-native decoys on datasets where near-native decoys are severely under-sampled by a protein structure prediction method. Reasonable progress is reported by methods that additionally take into account the internal energy of a structure and employ it to identify basins in the energy landscape organizing the multitude of decoys. These methods, however, incur significant time costs for extracting basins from the landscape. In this paper, we propose a novel decoy selection method based on non-negative matrix factorization. We demonstrate that our method outperforms energy landscape-based methods. In particular, the proposed method addresses both the time cost issue and the challenge of identifying good decoys in a sparse dataset, successfully recognizing near-native decoys for both easy and hard protein targets.


Assuntos
Algoritmos , Proteínas , Análise por Conglomerados , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Proteínas/genética
4.
J Bioinform Comput Biol ; 17(6): 1940014, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-32019409

RESUMO

Molecular dynamics (MD) simulation software allows probing the equilibrium structural dynamics of a molecule of interest, revealing how a molecule navigates its structure space one structure at a time. To obtain a broader view of dynamics, typically one needs to launch many such simulations, obtaining many trajectories. A summarization of the equilibrium dynamics requires integrating the information in the various trajectories, and Markov State Models (MSM) are increasingly being used for this task. At its core, the task involves organizing the structures accessed in simulation into structural states, and then constructing a transition probability matrix revealing the transitions between states. While now considered a mature technology and widely used to summarize equilibrium dynamics, the underlying computational process in the construction of an MSM ignores energetics even though the transition of a molecule between two nearby structures in an MD trajectory is governed by the corresponding energies. In this paper, we connect theory with simulation and analysis of equilibrium dynamics. A molecule navigates the energy landscape underlying the structure space. The structural states that are identified via off-the-shelf clustering algorithms need to be connected to thermodynamically-stable and semi-stable (macro)states among which transitions can then be quantified. Leveraging recent developments in the analysis of energy landscapes that identify basins in the landscape, we evaluate the hypothesis that basins, directly tied to stable and semi-stable states, lead to better models of dynamics. Our analysis indicates that basins lead to MSMs of better quality and thus can be useful to further advance this widely-used technology for summarization of molecular equilibrium dynamics.


Assuntos
Algoritmos , Encefalina Metionina/química , Cadeias de Markov , Simulação de Dinâmica Molecular , Análise por Conglomerados , Visualização de Dados , Modelos Moleculares , Software , Termodinâmica
5.
Biomolecules ; 9(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615116

RESUMO

The energy landscape that organizes microstates of a molecular system and governs theunderlying molecular dynamics exposes the relationship between molecular form/structure, changesto form, and biological activity or function in the cell. However, several challenges stand in the wayof leveraging energy landscapes for relating structure and structural dynamics to function. Energylandscapes are high-dimensional, multi-modal, and often overly-rugged. Deep wells or basins inthem do not always correspond to stable structural states but are instead the result of inherentinaccuracies in semi-empirical molecular energy functions. Due to these challenges, energeticsis typically ignored in computational approaches addressing long-standing central questions incomputational biology, such as protein decoy selection. In the latter, the goal is to determine over apossibly large number of computationally-generated three-dimensional structures of a protein thosestructures that are biologically-active/native. In recent work, we have recast our attention on theprotein energy landscape and its role in helping us to advance decoy selection. Here, we summarizesome of our successes so far in this direction via unsupervised learning. More importantly, we furtheradvance the argument that the energy landscape holds valuable information to aid and advance thestate of protein decoy selection via novel machine learning methodologies that leverage supervisedlearning. Our focus in this article is on decoy selection for the purpose of a rigorous, quantitativeevaluation of how leveraging protein energy landscapes advances an important problem in proteinmodeling. However, the ideas and concepts presented here are generally useful to make discoveriesin studies aiming to relate molecular structure and structural dynamics to function.


Assuntos
Proteínas/química , Aprendizado de Máquina Supervisionado , Termodinâmica , Bases de Dados de Proteínas , Conformação Proteica , Proteínas/isolamento & purificação
6.
Comput Biol Chem ; 59 Pt A: 28-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386663

RESUMO

Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising.


Assuntos
Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Heurística
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA