Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118612, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442814

RESUMO

Landfills, as a source of potentially toxic elements (PTEs), pose a threat to the environment and human health. A literature review was conducted to explore the diversity of arthropods inhabiting solid waste landfills, as well as on the bioaccumulation of PTEs by arthropods. This review presents scientific papers over the last 20 years. Their importance in landfill ecosystems has been the subject of research; however, the issue of the accumulation of compounds such as toxic elements is emphasized only in a few studies. The bioaccumulation of PTEs was studied for 10 arthropod species that founded in landfills: Orthomorpha coarctata and Trigoniulus corallinus (class Diplopoda), Armadillidium vulgare and Trachelipus rathkii (class Malacostraca), the 6 species of the class Insecta - Zonocerus variegatus, Anacanthotermes ochraceus, Macrotermes bellicosus, Austroaeschna inermis, Calathus fuscipes and Harpalus rubripes.


Assuntos
Artrópodes , Instalações de Eliminação de Resíduos , Animais , Monitoramento Ambiental , Bioacumulação , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Sci Rep ; 13(1): 8306, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221262

RESUMO

The breeding of insects generates waste in the form of insect excrement and feed residues. In addition, a specific chitinous waste in the form of insect larvae and pupae exuvia is also left. Recent research tries to manage it, e.g., by producing chitin and chitosan, which are value-added products. The circular economy approach requires testing new, non-standard management methods that can develop products with unique properties. To date, the possibility of biochar production from chitinous waste derived from insects has not been evaluated. Here we show that the puparia of Hermetia illucens are suitable for biochar production, which in turn exhibits original characteristics. We found that the biochars have a high nitrogen level, which is rarely achievable in materials of natural origin without artificial doping. This study presents a detailed chemical and physical characterization of the biochars. Moreover, ecotoxicological analysis has revealed the biochars' stimulation effect on plant root growth and the reproduction of the soil invertebrate Folsomia candida, as well as the lack of a toxic effect on its mortality. This predisposes these novel materials with already built-in stimulating properties to be used in agronomy, for example as a carriers for fertilizers or beneficial bacteria.


Assuntos
Quitosana , Dípteros , Animais , Quitina , Solo
3.
Biology (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671718

RESUMO

Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.

4.
Biology (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923892

RESUMO

Bioaccumulation, expressed as the bioaccumulation factor (BAF), is a phenomenon widely investigated in the natural environment and at laboratory scale. However, the BAF is more suitable for ecological studies, while in small-scale experiments it has limitations, which are discussed in this article. We propose a new indicator, the bioaccumulation index (BAI). The BAI takes into account the initial load of test elements, which are added to the experimental system together with the biomass of the organism. This offers the opportunity to explore the phenomena related to the bioaccumulation and, contrary to the BAF, can also reveal the dilution of element concentration in the organism. The BAF can overestimate bioaccumulation, and in an extremal situation, when the dilution of element concentration during organism growth occurs, the BAF may produce completely opposite results to the BAI. In one of the examples presented in this work (Tschirner and Simon, 2015), the concentration of phosphorous in fly larvae was lower after the experiment than in the younger larvae before the experiment. Because the phosphorous concentration in the feed was low, the BAF indicated a high bioaccumulation of this element (BAF = 14.85). In contrast, the BAI showed element dilution, which is a more realistic situation (BAI = -0.32). By taking more data into account, the BAI seems to be more valid in determining bioaccumulation, especially in the context of entomoremediation research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA