Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475051

RESUMO

Vehicles are no longer stand-alone mechanical entities due to the advancements in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication-centric Internet of Connected Vehicles (IoV) frameworks. However, the advancement in connected vehicles leads to another serious security threat, online vehicle hijacking, where the steering control of vehicles can be hacked online. The feasibility of traditional security solutions in IoV environments is very limited, considering the intermittent network connectivity to cloud servers and vehicle-centric computing capability constraints. In this context, this paper presents a Blockchain-enabled Security Architecture for a connected vehicular Fog networking Environment (B-SAFE). Firstly, blockchain security and vehicular fog networking are introduced as preliminaries of the framework. Secondly, a three-layer architecture of B-SAFE is presented, focusing on vehicular communication, blockchain at fog nodes, and the cloud as trust and reward management for vehicles. Thirdly, details of the blockchain implementation at fog nodes is presented, along with a flowchart and algorithm. The performance of the evaluation of the proposed framework B-SAFE attests to the benefits in terms of trust, reward points, and threshold calculation.

2.
Sensors (Basel) ; 24(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39338646

RESUMO

Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads. However, the packet delivery ratio (PDR) and link recovery time for AODV performs worse compared to flooding-based BLE protocols when encountering link disruptions. We propose the Multipath Optimized AODV (M-O-AODV) protocol to address these issues, with improved PDR and link robustness compared with other forwarding-based protocols. In addition, M-O-AODV achieved a PDR of 88%, comparable to the PDR of 92% for flooding-based BLE, unlike protocols such as Reverse-AODV (R-AODV). Also, M-O-AODV was able to perform link recovery within 3700 ms in the case of node failures, compared with other forwarding-based protocols that require 4800 ms to 6000 ms. Consequently, M-O-AODV-based BLE mesh networks are more efficient for wireless sensor-enabled IoT environments.

3.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960470

RESUMO

Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent years for enabling intelligent transport systems, guaranteeing traffic safety, and averting collisions. However, because of numerous types of assaults, such as Distributed Denial of Service (DDoS) and Denial of Service (DoS), VANETs have significant difficulties. A powerful Network Intrusion Detection System (NIDS) powered by Artificial Intelligence (AI) is required to overcome these security issues. This research presents an innovative method for creating an AI-based NIDS that uses Deep Learning methods. The suggested model specifically incorporates the Self Attention-Based Bidirectional Long Short-Term Memory (SA-BiLSTM) for classification and the Cascaded Convolution Neural Network (CCNN) for learning high-level features. The Multi-variant Gradient-Based Optimization algorithm (MV-GBO) is applied to improve CCNN and SA-BiLSTM further to enhance the model's performance. Additionally, information gained using MV-GBO-based feature extraction is employed to enhance feature learning. The effectiveness of the proposed model is evaluated on reliable datasets such as KDD-CUP99, ToN-IoT, and VeReMi, which are utilized on the MATLAB platform. The proposed model achieved 99% accuracy on all the datasets.

4.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571500

RESUMO

The increasing availability of Electric Vehicles (EVs) is driving a shift away from traditional gasoline-powered vehicles. Subsequently, the demand for Electric Vehicle Charging Systems (EVCS) is rising, leading to the significant growth of EVCS as public and private charging infrastructure. The cybersecurity-related risks in EVCS have significantly increased due to the growing network of EVCS. In this context, this paper presents a cybersecurity risk analysis of the network of EVCS. Firstly, the recent advancements in the EVCS network, recent EV adaptation trends, and charging use cases are described as a background of the research area. Secondly, cybersecurity aspects in EVCS have been presented considering infrastructure and protocol-centric vulnerabilities with possible cyber-attack scenarios. Thirdly, threats in EVCS have been validated with real-time data-centric analysis of EV charging sessions. The paper also highlights potential open research issues in EV cyber research as new knowledge for domain researchers and practitioners.

5.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904639

RESUMO

In this research paper, the spatial distributions of five different services-Voice over Internet Protocol (VoIP), Video Conferencing (VC), Hypertext Transfer Protocol (HTTP), and Electronic Mail-are investigated using three different approaches: circular, random, and uniform approaches. The amount of each service varies from one to another. In certain distinct settings, which are collectively referred to as mixed applications, a variety of services are activated and configured at predetermined percentages. These services run simultaneously. Furthermore, this paper has established a new algorithm to assess both the real-time and best-effort services of the various IEEE 802.11 technologies, describing the best networking architecture as either a Basic Service Set (BSS), an Extended Service Set (ESS), or an Independent Basic Service Set (IBSS). Due to this fact, the purpose of our research is to provide the user or client with an analysis that suggests a suitable technology and network configuration without wasting resources on unnecessary technologies or requiring a complete re-setup. In this context, this paper presents a network prioritization framework for enabling smart environments to determine an appropriate WLAN standard or a combination of standards that best supports a specific set of smart network applications in a specified environment. A network QoS modeling technique for smart services has been derived for assessing best-effort HTTP and FTP, and the real-time performance of VoIP and VC services enabled via IEEE 802.11 protocols in order to discover more optimal network architecture. A number of IEEE 802.11 technologies have been ranked by using the proposed network optimization technique with separate case studies for the circular, random, and uniform geographical distributions of smart services. The performance of the proposed framework is validated using a realistic smart environment simulation setting, considering both real-time and best-effort services as case studies with a range of metrics related to smart environments.

6.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808211

RESUMO

An identity management system is essential in any organisation to provide quality services to each authenticated user. The smart healthcare system should use reliable identity management to ensure timely service to authorised users. Traditional healthcare uses a paper-based identity system which is converted into centralised identity management in a smart healthcare system. Centralised identity management has security issues such as denial of service attacks, single-point failure, information breaches of patients, and many privacy issues. Decentralisedidentity management can be a robust solution to these security and privacy issues. We proposed a Self-Sovereign identity management system for the smart healthcare system (SSI-SHS), which manages the identity of each stakeholder, including medical devices or sensors, in a decentralisedmanner in the Internet of Medical Things (IoMT) Environment. The proposed system gives the user complete control of their data at each point. Further, we analysed the proposed identity management system against Allen and Cameron's identity management guidelines. We also present the performance analysis of SSI as compared to the state-of-the-art techniques.


Assuntos
Internet das Coisas , Autogestão , Segurança Computacional , Atenção à Saúde/métodos , Humanos , Privacidade
7.
Sensors (Basel) ; 22(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35957292

RESUMO

In the last few years, the Internet of things (IoT) has recently gained attention in developing various smart city applications such as smart healthcare, smart supply chain, smart home, smart grid, etc. The existing literature focuses on the smart healthcare system as a public emergency service (PES) to provide timely treatment to the patient. However, little attention is given to a distributed smart fire brigade system as a PES to protect human life and properties from severe fire damage. The traditional PES are developed on a centralised system, which requires high computation and does not ensure timely service fulfilment. Furthermore, these traditional PESs suffer from a lack of trust, transparency, data integrity, and a single point of failure issue. In this context, this paper proposes a Blockchain-Enabled Secure and Trusted (BEST) framework for PES in the smart city environment. The BEST framework focuses on providing a fire brigade service as a PES to the smart home based on IoT device information to protect it from serious fire damage. Further, we used two edge computing servers, an IoT controller and a service controller. The IoT and service controller are used for local storage and to enhance the data processing speed of PES requests and PES fulfilments, respectively. The IoT controller manages an access control list to keep track of registered IoT gateways and their IoT devices, avoiding misguiding the PES department. The service controller utilised the queue model to handle the PES requests based on the minimum service queue length. Further, various smart contracts are designed on the Hyperledger Fabric platform to automatically call a PES either in the presence or absence of the smart-home owner under uncertain environmental conditions. The performance evaluation of the proposed BEST framework indicates the benefits of utilising the distributed environment and the smart contract logic. The various simulation results are evaluated in terms of service queue length, utilisation, actual arrival time, expected arrival time, number of PES departments, number of PES providers, and end-to-end delay. These simulation results show the effectiveness and feasibility of the BEST framework.


Assuntos
Blockchain , Internet das Coisas , Cidades , Segurança Computacional , Humanos , Confiança
8.
Sensors (Basel) ; 22(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36081138

RESUMO

In-vehicle communication has become an integral part of today's driving environment considering the growing add-ons of sensor-centric communication and computing devices inside a vehicle for a range of purposes including vehicle monitoring, physical wiring reduction, and driving efficiency. However, related literature on cyber security for in-vehicle communication systems is still lacking potential dedicated solutions for in-vehicle cyber risks. Existing solutions are mainly relying on protocol-specific security techniques and lacking an overall security framework for in-vehicle communication. In this context, this paper critically explores the literature on cyber security for in-vehicle communication focusing on technical architecture, methodologies, challenges, and possible solutions. In-vehicle communication network architecture is presented considering key components, interfaces, and related technologies. The protocols for in-vehicle communication have been classified based on their characteristics, and usage type. Security solutions for in-vehicle communication have been critically reviewed considering machine learning, cryptography, and port-centric techniques. A multi-layer secure framework is also developed as a protocol and use case-independent in-vehicle communication solution. Finally, open challenges and future dimensions of research for in-vehicle communication cyber security are highlighted as observations and recommendations.


Assuntos
Condução de Veículo , Segurança Computacional
9.
Sensors (Basel) ; 22(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632318

RESUMO

Clustering is a promising technique for optimizing energy consumption in sensor-enabled Internet of Things (IoT) networks. Uneven distribution of cluster heads (CHs) across the network, repeatedly choosing the same IoT nodes as CHs and identifying cluster heads in the communication range of other CHs are the major problems leading to higher energy consumption in IoT networks. In this paper, using fuzzy logic, bio-inspired chicken swarm optimization (CSO) and a genetic algorithm, an optimal cluster formation is presented as a Hybrid Intelligent Optimization Algorithm (HIOA) to minimize overall energy consumption in an IoT network. In HIOA, the key idea for formation of IoT nodes as clusters depends on finding chromosomes having a minimum value fitness function with relevant network parameters. The fitness function includes minimization of inter- and intra-cluster distance to reduce the interface and minimum energy consumption over communication per round. The hierarchical order classification of CSO utilizes the crossover and mutation operation of the genetic approach to increase the population diversity that ultimately solves the uneven distribution of CHs and turnout to be balanced network load. The proposed HIOA algorithm is simulated over MATLAB2019A and its performance over CSO parameters is analyzed, and it is found that the best fitness value of the proposed algorithm HIOA is obtained though setting up the parameters popsize=60, number of rooster Nr=0.3, number of hen's Nh=0.6 and swarm updating frequency θ=10. Further, comparative results proved that HIOA is more effective than traditional bio-inspired algorithms in terms of node death percentage, average residual energy and network lifetime by 12%, 19% and 23%.


Assuntos
Internet das Coisas , Animais , Galinhas , Análise por Conglomerados , Comunicação , Redes de Comunicação de Computadores , Feminino , Masculino
10.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897981

RESUMO

Recent years have witnessed rapid development and great indignation burgeoning in the unmanned aerial vehicles (UAV) field. This growth of UAV-related research contributes to several challenges, including inter-communication from vehicle to vehicle, transportation coverage, network information gathering, network interworking effectiveness, etc. Due to ease of usage, UAVs have found novel applications in various areas such as agriculture, defence, security, medicine, and observation for traffic-monitoring applications. This paper presents an innovative drone system by designing and developing a blended-wing-body (BWB)-based configuration for next-generation drone use cases. The proposed method has several benefits, including a very low interference drag, evenly distributed load inside the body, and less radar signature compared to the state-of-the-art configurations. During the entire procedure, a standard design approach was followed to optimise the BWB framework for next-generation use cases by considering the typically associated parameters such as vertical take-off and landing and drag and stability of the BWB. Extensive simulation experiments were performed to carry out a performance analysis of the proposed model in a software-based environment. To further confirm that the model design of the BWB-UAV is fit to execute the targeted missions, the real-time working environments were tested through advanced numerical simulation and focused on avoiding cost and unwanted wastages. To enhance the trustworthiness of this said computational fluid dynamics (CFD) analysis, grid convergence test-based validation was also conducted. Two different grid convergence tests were conducted on the induced velocity of the Version I UAV and equivalent stress of the Version II UAV. Finite element analysis-based computations were involved in estimating structural outcomes. Finally, the mesh quality was obtained as 0.984 out of 1. The proposed model is very cost-effective for performing a different kind of manoeuvring activities with the help of its unique design at reasonable mobility speed and hence can be modelled for high-speed-based complex next-generation use cases.


Assuntos
Aeronaves , Dispositivos Aéreos não Tripulados , Agricultura , Coleta de Dados
11.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161992

RESUMO

Heterogeneous vehicular communication on the Internet of connected vehicle (IoV) environment is an emerging research theme toward achieving smart transportation. It is an evolution of the existing vehicular ad hoc network architecture due to the increasingly heterogeneous nature of the various existing networks in road traffic environments that need to be integrated. The existing literature on vehicular communication is lacking in the area of network optimization for heterogeneous network environments. In this context, this paper proposes a heterogeneous network model for IoV and service-oriented network optimization. The network model focuses on three key networking entities: vehicular cloud, heterogeneous communication, and smart use cases as clients. Most traffic-related data-oriented computations are performed at cloud servers for making intelligent decisions. The connection component enables handoff-centric network communication in heterogeneous vehicular environments. The use-case-oriented smart traffic services are implemented as clients for the network model. The model is tested for various service-oriented metrics in heterogeneous vehicular communication environments with the aim of affirming several service benefits. Future challenges and issues in heterogeneous IoV environments are also highlighted.


Assuntos
Meios de Transporte , Humanos
12.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800227

RESUMO

Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.

13.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201100

RESUMO

Recently, green computing has received significant attention for Internet of Things (IoT) environments due to the growing computing demands under tiny sensor enabled smart services. The related literature on green computing majorly focuses on a cover set approach that works efficiently for target coverage, but it is not applicable in case of area coverage. In this paper, we present a new variant of a cover set approach called a grouping and sponsoring aware IoT framework (GS-IoT) that is suitable for area coverage. We achieve non-overlapping coverage for an entire sensing region employing sectorial sensing. Non-overlapping coverage not only guarantees a sufficiently good coverage in case of large number of sensors deployed randomly, but also maximizes the life span of the whole network with appropriate scheduling of sensors. A deployment model for distribution of sensors is developed to ensure a minimum threshold density of sensors in the sensing region. In particular, a fast converging grouping (FCG) algorithm is developed to group sensors in order to ensure minimal overlapping. A sponsoring aware sectorial coverage (SSC) algorithm is developed to set off redundant sensors and to balance the overall network energy consumption. GS-IoT framework effectively combines both the algorithms for smart services. The simulation experimental results attest to the benefit of the proposed framework as compared to the state-of-the-art techniques in terms of various metrics for smart IoT environments including rate of overlapping, response time, coverage, active sensors, and life span of the overall network.


Assuntos
Internet das Coisas , Algoritmos , Simulação por Computador , Confidencialidade
14.
Sensors (Basel) ; 20(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138260

RESUMO

Underwater sensor networks (UWSNs) have witnessed significant R&D attention in both academia and industry due to their growing application domains, such as border security, freight via sea or river, natural petroleum production and the fishing industry. Considering the deep underwater-oriented access constraints, energy-centric communication for the lifetime maximization of tiny sensor nodes in UWSNs is one of the key research themes in this domain. Existing literature on green UWSNs are majorly adapted from the existing techniques in traditional wireless sensor network relying on geolocation and the quality of service-centric underwater relay node selection, without paying much attention to the dynamic underwater network environments. To this end, this paper presents an adapted whale and wolf optimization-based energy and delay-centric green underwater networking framework (W-GUN). It focuses on exploiting dynamic underwater network characteristics by effectively utilizing underwater whale-centric optimization in relay node selection. Firstly, an underwater relay node optimization model is mathematically derived, focusing on underwater whale dynamics for incorporating realistic underwater characteristics in networking. Secondly, the optimization model is used to develop an adapted whale and grey wolf optimization algorithm for selecting optimal and stable relay nodes for centric underwater communication paths. Thirdly, a complete workflow of the W-GUN framework is presented with an optimization flowchart. The comparative performance evaluation attests to the benefits of the proposed framework and is compared to state-of-the-art techniques considering various metrics related to underwater network environments.

15.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887338

RESUMO

COVID-19 has shown a relatively low case fatality rate in young healthy individuals, with the majority of this group being asymptomatic or having mild symptoms. However, the severity of the disease among the elderly as well as in individuals with underlying health conditions has caused significant mortality rates worldwide. Understanding this variance amongst different sectors of society and modelling this will enable the different levels of risk to be determined to enable strategies to be applied to different groups. Long-established compartmental epidemiological models like SIR and SEIR do not account for the variability encountered in the severity of the SARS-CoV-2 disease across different population groups. The objective of this study is to investigate how a reduction in the exposure of vulnerable individuals to COVID-19 can minimise the number of deaths caused by the disease, using the UK as a case study. To overcome the limitation of long-established compartmental epidemiological models, it is proposed that a modified model, namely SEIR-v, through which the population is separated into two groups regarding their vulnerability to SARS-CoV-2 is applied. This enables the analysis of the spread of the epidemic when different contention measures are applied to different groups in society regarding their vulnerability to the disease. A Monte Carlo simulation (100,000 runs) along the proposed SEIR-v model is used to study the number of deaths which could be avoided as a function of the decrease in the exposure of vulnerable individuals to the disease. The results indicate a large number of deaths could be avoided by a slight realistic decrease in the exposure of vulnerable groups to the disease. The mean values across the simulations indicate 3681 and 7460 lives could be saved when such exposure is reduced by 10% and 20% respectively. From the encouraging results of the modelling a number of mechanisms are proposed to limit the exposure of vulnerable individuals to the disease. One option could be the provision of a wristband to vulnerable people and those without a smartphone and contact-tracing app, filling the gap created by systems relying on smartphone apps only. By combining very dense contact tracing data from smartphone apps and wristband signals with information about infection status and symptoms, vulnerable people can be protected and kept safer.


Assuntos
Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Transmissão de Doença Infecciosa/estatística & dados numéricos , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Saúde Pública/métodos , Quarentena/organização & administração , Populações Vulneráveis , COVID-19 , Busca de Comunicante/métodos , Infecções por Coronavirus/epidemiologia , Surtos de Doenças/prevenção & controle , Diretrizes para o Planejamento em Saúde , Necessidades e Demandas de Serviços de Saúde , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Controle de Infecções/estatística & dados numéricos , Invenções/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Serviços Preventivos de Saúde/métodos , Serviços Preventivos de Saúde/organização & administração , Serviços Preventivos de Saúde/normas , Saúde Pública/estatística & dados numéricos , Administração em Saúde Pública/métodos , Quarentena/métodos , Quarentena/estatística & dados numéricos , Reino Unido/epidemiologia , Populações Vulneráveis/estatística & dados numéricos
16.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498459

RESUMO

Aerial ad-hoc networks have the potential to enable smart services while maintaining communication between the ground system and unmanned aerial vehicles (UAV). Previous research has focused on enabling aerial data-centric smart services while integrating the benefits of aerial objects such as UAVs in hostile and non-hostile environments. Quality of service (QoS) provisioning in UAV-assisted communication is a challenging research theme in aerial ad-hoc networks environments. Literature on aerial ad hoc networks lacks cooperative service-oriented modeling for distributed network environments, relying on costly static base station-oriented centralized network environments. Towards this end, this paper proposes a quality of service provisioning framework for a UAV-assisted aerial ad hoc network environment (QSPU) focusing on reliable aerial communication. The UAV's aerial mobility and service parameters are modelled considering highly dynamic aerial ad-hoc environments. UAV-centric mobility models are utilized to develop a complete aerial routing framework. A comparative performance evaluation demonstrates the benefits of the proposed aerial communication framework. It is evident that QSPU outperforms the state-of-the-art techniques in terms of a number of service-oriented performance metrics in a UAV-assisted aerial ad-hoc network environment.

17.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353003

RESUMO

In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.

18.
J Med Syst ; 41(6): 93, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28466452

RESUMO

Recently, Wireless Body Area Network (WBAN) has witnessed significant attentions in research and product development due to the growing number of sensor-based applications in healthcare domain. Design of efficient and effective Medium Access Control (MAC) protocol is one of the fundamental research themes in WBAN. Static on-demand slot allocation to patient data is the main approach adopted in the design of MAC protocol in literature, without considering the type of patient data specifically the level of severity on patient data. This leads to the degradation of the performance of MAC protocols considering effectiveness and traffic adjustability in realistic medical environments. In this context, this paper proposes a Traffic Priority-Aware MAC (TraPy-MAC) protocol for WBAN. It classifies patient data into emergency and non-emergency categories based on the severity of patient data. The threshold value aided classification considers a number of parameters including type of sensor, body placement location, and data transmission time for allocating dedicated slots patient data. Emergency data are not required to carry out contention and slots are allocated by giving the due importance to threshold value of vital sign data. The contention for slots is made efficient in case of non-emergency data considering threshold value in slot allocation. Moreover, the slot allocation to emergency and non-emergency data are performed parallel resulting in performance gain in channel assignment. Two algorithms namely, Detection of Severity on Vital Sign data (DSVS), and ETS Slots allocation based on the Severity on Vital Sign (ETS-SVS) are developed for calculating threshold value and resolving the conflicts of channel assignment, respectively. Simulations are performed in ns2 and results are compared with the state-of-the-art MAC techniques. Analysis of results attests the benefit of TraPy-MAC in comparison with the state-of-the-art MAC in channel assignment in realistic medical environments.


Assuntos
Tecnologia sem Fio , Algoritmos
19.
Sensors (Basel) ; 14(12): 22342-71, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25429415

RESUMO

Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.

20.
PLoS One ; 11(6): e0156885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27285146

RESUMO

Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Segurança Computacional , Tecnologia sem Fio , Comunicação , Redes de Comunicação de Computadores/normas , Segurança Computacional/normas , Simulação por Computador , Desastres , Análise de Elementos Finitos , Humanos , Disseminação de Informação/métodos , Militares , Modelos Teóricos , Tecnologia sem Fio/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA