Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 199(8): 1103-1112, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432381

RESUMO

The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.


Assuntos
Compostos Alílicos/farmacologia , Antibacterianos/farmacologia , Etídio/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Sulfetos/farmacologia , Vibrio cholerae/metabolismo , Cólera/tratamento farmacológico , Cólera/microbiologia , Sinergismo Farmacológico , Alho/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
2.
Arch Microbiol ; 199(3): 465-474, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27830269

RESUMO

Staphylococcus aureus is a serious causative agent of infectious disease. Multidrug-resistant strains like methicillin-resistant S. aureus compromise treatment efficacy, causing significant morbidity and mortality. Active efflux represents a major antimicrobial resistance mechanism. The proton-driven multidrug efflux pump, LmrS, actively exports structurally distinct antimicrobials. To circumvent resistance and restore clinical efficacy of antibiotics, efflux pump inhibitors are necessary, and natural edible spices like cumin are potential candidates. The mode of cumin antibacterial action and underlying mechanisms behind drug resistance inhibition, however, are unclear. We tested the hypothesis that cumin inhibits LmrS drug transport. We found that cumin inhibited bacterial growth and LmrS ethidium transport in a dosage-dependent manner. We demonstrate that cumin is antibacterial toward a multidrug-resistant host and that resistance modulation involves multidrug efflux inhibition.


Assuntos
Cuminum/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genes MDR/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Etídio/metabolismo , Genes MDR/genética , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
3.
Infect Disord Drug Targets ; 16(1): 28-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27052334

RESUMO

Causative agents of infectious disease that are multidrug resistant bacterial pathogens represent a serious public health concern due to the increasingly difficult nature of achieving efficacious clinical treatments. Of the various acquired and intrinsic antimicrobial agent resistance determinants, integral-membrane multidrug efflux pumps of the major facilitator superfamily constitute a major mechanism of bacterial resistance. The major facilitator superfamily (MFS) encompasses thousands of known related secondary active and passive solute transporters, including multidrug efflux pumps, from bacteria to humans. This review article addresses recent developments involving the targeting by various modulators of bacterial multidrug efflux pumps from the major facilitator superfamily. It is currently of tremendous interest to modulate bacterial multidrug efflux pumps in order to eventually restore the clinical efficacy of therapeutic agents against recalcitrant bacterial infections. Such MFS multidrug efflux pumps are good targets for modulation.


Assuntos
Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Transporte Biológico , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli/patogenicidade , Genes MDR , Humanos , Proteínas de Membrana Transportadoras/genética , Terapia de Alvo Molecular
4.
Int J Pharm Sci Res ; 7(2): 554-572, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26913287

RESUMO

One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2 (non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D-contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates.

5.
Trends Cell Mol Biol ; 10: 131-140, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27065631

RESUMO

The biological membrane is an efficient barrier against water-soluble substances. Solute transporters circumvent this membrane barrier by transporting water-soluble solutes across the membrane to the other sides. These transport proteins are thus required for all living organisms. Microorganisms, such as bacteria, effectively exploit solute transporters to acquire useful nutrients for growth or to expel substances that are inhibitory to their growth. Overall, there are distinct types of related solute transporters that are grouped into families or superfamilies. Of these various transporters, the major facilitator superfamily (MFS) represents a very large and constantly growing group and are driven by solute- and ion-gradients, making them passive and secondary active transporters, respectively. Members of the major facilitator superfamily transport an extreme variety of structurally different substrates such as antimicrobial agents, amino acids, sugars, intermediary metabolites, ions, and other small molecules. Importantly, bacteria, especially pathogenic ones, have evolved multidrug efflux pumps which belong to the major facilitator superfamily. Furthermore, members of this important superfamily share similar primary sequences in the form of highly conserved sequence motifs that confer useful functional properties during transport. The transporters of the superfamily also share similarities in secondary structures, such as possessing 12- or 14-membrane spanning α-helices and the more recently described 3-helix structure repeat element, known as the MFS fold. The three-dimensional structures of bacterial multidrug efflux pumps have been determined for only a few members of the superfamily, all drug pumps of which are surprisingly from Escherichia coli. This review briefly summarizes the structural properties of the bacterial multidrug efflux pumps of the major facilitator superfamily in a comparative manner and provides future directions for study.

6.
Int J Environ Res Public Health ; 12(2): 1487-547, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25635914

RESUMO

Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.


Assuntos
Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Enterobacteriaceae/fisiologia , Microbiologia de Alimentos , Proteínas de Membrana Transportadoras/fisiologia , Staphylococcus aureus/fisiologia , Vibrio cholerae/fisiologia , Transporte Biológico/fisiologia
7.
Int J Pharm Sci Res ; 5(10): 4141-4152, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25750914

RESUMO

Thromboembolic disorders are the leading cause of human mortality. Therefore, development of effective anticoagulant therapy is critical. Factor XIIIA (FXIIIA) protein is a crucial factor in the blood coagulation cascade, and hence it is a vital target for evolution of new antithrombotic agents. Structure-function studies of clotting factor active sites, clot formation, and thrombus structure have gained prominence in the efforts to develop novel anticoagulants. Factor XIIIA was homology modelled with the human transglutaminase-2 crystal structure as a base template for BLAST analysis. Docking and comparative binding site analysis revealed active site residue conservation and inhibitor-protein interactions. Nineteen small molecules possessing suspected anticoagulant properties were successfully docked into the FXIIIA active site following the best CoMFA and CoMSIA prediction values. Dabigatran etexilate was anticipated to be the best FXIIIA inhibitor among the nineteen anticoagulants with the highest binding affinity for the FXIIIA protein and the highest FlexX dock score of -29.8 KJ/mol. Structural properties of FXIIIA inhibitors with increased antithrombotic activity were predicted by this docking study.

8.
Genom Discov ; 2(1): 1-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25722857

RESUMO

Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA