Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180530

RESUMO

OBJECTIVE: To evaluate the use of reporting checklists and quality scoring tools for self-reporting purposes in radiomics literature. METHODS: Literature search was conducted in PubMed (date, April 23, 2023). The radiomics literature was sampled at random after a sample size calculation with a priori power analysis. A systematic assessment for self-reporting, including the use of documentation such as completed checklists or quality scoring tools, was conducted in original research papers. These eligible papers underwent independent evaluation by a panel of nine readers, with three readers assigned to each paper. Automatic annotation was used to assist in this process. Then, a detailed item-by-item confirmation analysis was carried out on papers with checklist documentation, with independent evaluation of two readers. RESULTS: The sample size calculation yielded 117 papers. Most of the included papers were retrospective (94%; 110/117), single-center (68%; 80/117), based on their private data (89%; 104/117), and lacked external validation (79%; 93/117). Only seven papers (6%) had at least one self-reported document (Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), or Checklist for Artificial Intelligence in Medical Imaging (CLAIM)), with a statistically significant binomial test (p < 0.001). Median rate of confirmed items for all three documents was 81% (interquartile range, 6). For quality scoring tools, documented scores were higher than suggested scores, with a mean difference of - 7.2 (standard deviation, 6.8). CONCLUSION: Radiomic publications often lack self-reported checklists or quality scoring tools. Even when such documents are provided, it is essential to be cautious, as the accuracy of the reported items or scores may be questionable. CLINICAL RELEVANCE STATEMENT: Current state of radiomic literature reveals a notable absence of self-reporting with documentation and inaccurate reporting practices. This critical observation may serve as a catalyst for motivating the radiomics community to adopt and utilize such tools appropriately, thereby fostering rigor, transparency, and reproducibility of their research, moving the field forward. KEY POINTS: • In radiomics literature, there has been a notable absence of self-reporting with documentation. • Even if such documents are provided, it is critical to exercise caution because the accuracy of the reported items or scores may be questionable. • Radiomics community needs to be motivated to adopt and appropriately utilize the reporting checklists and quality scoring tools.

2.
Diagn Interv Radiol ; 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073244

RESUMO

PURPOSE: To systematically investigate the impact of image preprocessing parameters on the segmentation-based reproducibility of magnetic resonance imaging (MRI) radiomic features. METHODS: The MRI scans of 50 patients were included from the multi-institutional Brain Tumor Segmentation 2021 public glioma dataset. Whole tumor volumes were manually segmented by two independent readers, with the participation of eight readers. Radiomic features were extracted from two sequences: T2-weighted (T2) and contrast-enhanced T1-weighted (T1ce). Two methods were considered for discretization: bin count (i.e., relative discretization) and bin width (i.e., absolute discretization). Ten discretization (five for each method) and five resampling parameters were varied while other parameters were fixed. The intraclass correlation coefficient (ICC) was used for reliability analysis based on two commonly used cut-off values (0.75 and 0.90). RESULTS: Image preprocessing parameters had a significant impact on the segmentation-based reproducibility of radiomic features. The bin width method yielded more reproducible features than the bin count method. In discretization experiments using the bin width on both sequences, according to the ICC cut-off values of 0.75 and 0.90, the rate of reproducible features ranged from 70% to 84% and from 35% to 57%, respectively, with an increasing percentage trend as parameter values decreased (from 84 to 5 for T2; 100 to 6 for T1ce). In the resampling experiments, these ranged from 53% to 74% and from 10% to 20%, respectively, with an increasing percentage trend from lower to higher parameter values (physical voxel size; from 1 x 1 x 1 to 2 x 2 x 2 mm3). CONCLUSION: The segmentation-based reproducibility of radiomic features appears to be substantially influenced by discretization and resampling parameters. Our findings indicate that the bin width method should be used for discretization and lower bin width and higher resampling values should be used to allow more reproducible features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA