Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Eur Radiol ; 27(3): 1081-1086, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27306559

RESUMO

X-ray computed tomography (CT) has been proposed and evaluated multiple times as a potentially alternative method for breast imaging. All efforts shown so far have been criticized and partly disapproved because of their limited spatial resolution and higher patient dose when compared to mammography. Our concept for a dedicated breast CT (BCT) scanner therefore aimed at novel apparatus and detector design to provide high spatial resolution of about 100 µm and average glandular dose (AGD) levels of 5 mGy or below. Photon-counting technology was considered as a solution to reach these goals. The complete concept was previously evaluated and confirmed by simulations and basic experiments on laboratory setups. We here present measurements of dose, technical image quality parameters and surgical specimen results on such a scanner. For comparison purposes, the specimens were also imaged with digital mammography (DM) and breast tomosynthesis (BT) apparatus. Results show that photon-counting BCT (pcBCT) at 5 mGy AGD offers sufficiently high 3D spatial resolution for reliable detectability of calcifications and soft tissue delineation. KEY POINTS: • Photon-counting detector technology allows for spatial resolution better than 100 µm. • pcBCT allows for dose levels in the screening mammography range. • pcBCT provides the highest quality imaging of microcalcifications.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Estudos de Viabilidade , Feminino , Humanos , Mamografia/métodos , Mastectomia Segmentar , Imagens de Fantasmas , Fótons , Doses de Radiação
2.
Radiology ; 273(1): 153-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24937693

RESUMO

PURPOSE: To determine the dose-length product (DLP)-effective dose (ED) (DLP/ED) conversion coefficient (k) tables for the lower extremities that can be used for calculating ED. MATERIALS AND METHODS: Dose calculations were performed on standard phantoms using a validated Monte Carlo calculation tool. Calculations were performed to obtain ED values for tube voltages from 80 kV to 140 kV in steps of 20 kV for the following examinations: hip (femur), knee, ankle, and computed tomographic (CT) angiography of the lower extremities. Values of the DLP were calculated by multiplying measured CT dose index values by the scan length; k values resulted as the quotients of the ED and DLP values. DLP/ED coefficients averaged over the range of voltage values and their standard deviations were determined for the given lower-extremity CT examinations for all age groups and for both sexes. RESULTS: Coefficients depend strongly on the phantom age and size, but little on the kilovolt value. In the case of the newborn, for example, k values were 0.0612, 0.0046, 0.0014, and 0.047 for hip, knee, ankle, and CT angiography, respectively, while in the case of the adult, these respective values were 0.0110, 0.0004, 0.0002, and 0.0062. A substantial difference up to 20% between coefficients in male and female phantoms was observed for CT angiographic examination. CONCLUSION: DLP/ED conversion coefficients are provided for lower extremities and allow estimation of ED for commonly used clinical musculoskeletal CT and CT angiographic protocols.


Assuntos
Extremidade Inferior/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Feminino , Humanos , Masculino , Método de Monte Carlo , Radiometria , Software
3.
Eur Radiol ; 23(3): 597-606, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22983283

RESUMO

OBJECTIVES: We evaluated the potential of prospectively ECG-triggered high-pitch spiral acquisition with low tube voltage and current in combination with iterative reconstruction to achieve coronary CT angiography with sufficient image quality at an effective dose below 0.1 mSv. METHODS: Contrast-enhanced coronary dual source CT angiography (2 × 128 × 0.6 mm, 80 kV, 50 mAs) in prospectively ECG-triggered high-pitch spiral acquisition mode was performed in 21 consecutive individuals (body weight <100 kg, heart rate ≤60/min). Images were reconstructed with raw data-based filtered back projection (FBP) and iterative reconstruction (IR). Image quality was assessed on a 4-point scale (1 = no artefacts, 4 = unevaluable). RESULTS: Mean effective dose was 0.06 ± 0.01 mSv. Image noise was significantly reduced in IR (128.9 ± 46.6 vs. 158.2 ± 44.7 HU). The mean image quality score was lower for IR (1.9 ± 1.1 vs. 2.2 ± 1.0, P < 0.0001). Of 292 coronary segments, 55 in FBP and 40 in IR (P = 0.12) were graded "unevaluable". In patients with a body weight ≤75 kg, both in FBP and in IR, the rates of fully evaluable segments were significantly higher in comparison to patients >75 kg. CONCLUSIONS: Coronary CT angiography with an estimated effective dose <0.1 mSv may provide sufficient image quality in selected patients through the combination of high-pitch spiral acquisition and raw data-based iterative reconstruction.


Assuntos
Algoritmos , Angiografia Coronária/métodos , Estenose Coronária/diagnóstico por imagem , Doses de Radiação , Proteção Radiológica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Radiology ; 264(2): 567-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22692035

RESUMO

This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.


Assuntos
Doses de Radiação , Proteção Radiológica/métodos , Tomógrafos Computadorizados/tendências , Tomografia Computadorizada por Raios X/tendências , Fatores Etários , Algoritmos , Feminino , Humanos , Masculino , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fatores de Risco , Fatores Sexuais
5.
Eur Radiol ; 22(1): 1-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21656331

RESUMO

OBJECTIVE: Mammography, today's standard imaging approach, has deficits with respect to the superimposition of anatomical structures. Dedicated CT of the breast so far indicated that it can provide superior soft-tissue imaging, but that it still has significant limitations with respect to spatial resolution and dose. We have assessed novel dedicated breast CT technology. METHODS: Based on simulations and measurements we developed novel technology which uses direct-conversion CdTe material and photon-counting electronics with 100 µm detector element size for close to 100% dose efficiency. We assessed the potential for the imaging of microcalcifications of 100 to 200 µm diameter and soft-tissue lesions of 1 to 5 mm diameter by simulations at dose levels between 1 and 6 mGy. RESULTS: Microcalcifications of 150 µm and soft-tissue lesions of 2 mm diameter were found to be clearly detectable at an average glandular dose of 3 mGy. Separate displays are required for high-resolution microcalcification and for low-resolution soft-tissue analysis. Total CT data acquisition time will be below 10 s. CONCLUSION: Dedicated breast CT may eventually provide comprehensive diagnostic assessment of microcalcifications and soft-tissue structures at dose levels equivalent to or below those of two-view screening mammography.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Mama/efeitos da radiação , Calcinose/diagnóstico por imagem , Mamografia , Tomografia Computadorizada Espiral , Mama/patologia , Doenças Mamárias/patologia , Calcinose/patologia , Simulação por Computador , Estudos de Viabilidade , Feminino , Humanos , Mamografia/métodos , Imagens de Fantasmas , Doses de Radiação
6.
Eur Radiol ; 22(3): 569-78, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21984448

RESUMO

OBJECTIVES: To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine. METHODS: Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation. RESULTS: Estimates for mean relative ED was 7.1 ± 2.1 mSv/100 mAs for TCM and 12.5 ± 5.3 mSv/100 mAs for CTC (P < 0.001). Relative dose reduction at low HR (≤60 bpm) was highest (49 ± 5%) compared to intermediate (60-70 bpm, 33 ± 12%) and high HR (>70 bpm, 29 ± 12%). However lowest ED is achieved at high HR (5.2 ± 1.5 mSv/100 mAs), compared with intermediate (6.7 ± 1.6 mSv/100 mAs) and low (8.3 ± 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied. CONCLUSIONS: Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM. KEY POINTS: • Monte Carlo simulations allow for individual radiation dose calculations. • ECG-triggered tube current modulation (TCM) can effectively reduce radiation dose. • Slow and regular heart rates allow for highest dose reductions by TCM. • Adaptive pitch accounts for lowest radiation dose at high heart rates. • Women receive higher effective dose than men undergoing spiral coronary CT-angiography.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Angiografia Coronária/métodos , Método de Monte Carlo , Doses de Radiação , Radiometria/métodos , Tomografia Computadorizada Espiral/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Eletrocardiografia , Feminino , Humanos , Iopamidol/análogos & derivados , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores Sexuais
7.
Eur Radiol ; 22(4): 900-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22071777

RESUMO

OBJECTIVE: To evaluate the potential of in vivo dynamic contrast-enhanced micro-computed tomography (DCE micro-CT) for the assessment of antiangiogenic drug therapy response of mice with mammary carcinoma. METHODS: 20 female mice with implanted MCF7 tumours were split into control group and therapy group treated with a known effective antiangiogenic drug. All mice underwent DCE micro-CT for the 3D analysis of functional parameters (relative blood volume [rBV], vascular permeability [K], area under the time-enhancement curve [AUC]) and morphology. All parameters were determined for total, peripheral and central tumour volumes of interest (VOIs). Immunohistochemistry was performed to characterise tumour vascularisation. 3D dose distributions were determined. RESULTS: The mean AUCs were significantly lower in therapy with P values of 0.012, 0.007 and 0.023 for total, peripheral and central tumour VOIs. K and rBV showed significant differences for the peripheral (P(per)(K) = 0.032, P(per) (rBV) = 0.029), but not for the total and central tumour VOIs (P(total)(K) = 0.108, P(central)(K) = 0.246, P(total) (rBV) = 0.093, P(central) (rBV) = 0.136). Mean tumour volume was significantly smaller in therapy (P (in vivo) = 0.001, P (ex vivo) = 0.005). Histology revealed greater vascularisation in the controls and central tumour necrosis. Doses ranged from 150 to 300 mGy. CONCLUSIONS: This study indicates the great potential of DCE micro-CT for early in vivo assessment of antiangiogenic drug therapy response. KEY POINTS: Dynamic contrast enhanced micro-CT (computed tomography) is a new experimental laboratory technique. DCE micro-CT allows early in vivo assessment of antiangiogenic drug therapy response. Pharmaceutical drugs can be tested before translation to clinical practice. Both morphological and functional parameters can be obtained using DCE micro-CT. Antiangiogenic effects can be visualised with DCE micro-CT.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Imageamento Tridimensional/veterinária , Iohexol/análogos & derivados , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Sirolimo/análogos & derivados , Tomografia Computadorizada por Raios X/veterinária , Animais , Linhagem Celular Tumoral , Meios de Contraste , Everolimo , Feminino , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sirolimo/administração & dosagem , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
8.
Med Phys ; 39(8): 4918-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894418

RESUMO

PURPOSE: Misalignment artifacts are a serious problem in medical flat-detector computed tomography. Generally, the geometrical parameters, which are essential for reconstruction, are provided by preceding calibration routines. These procedures are time consuming and the later use of stored parameters is sensitive toward external impacts or patient movement. The method of choice in a clinical environment would be a markerless online-calibration procedure that allows flexible scan trajectories and simultaneously corrects misalignment and motion artifacts during the reconstruction process. Therefore, different image features were evaluated according to their capability of quantifying misalignment. METHODS: Projections of the FORBILD head and thorax phantoms were simulated. Additionally, acquisitions of a head phantom and patient data were used for evaluation. For the reconstruction different sources and magnitudes of misalignment were introduced in the geometry description. The resulting volumes were analyzed by entropy (based on the gray-level histogram), total variation, Gabor filter texture features, Haralick co-occurrence features, and Tamura texture features. The feature results were compared to the back-projection mismatch of the disturbed geometry. RESULTS: The evaluations demonstrate the ability of several well-established image features to classify misalignment. The authors elaborated the particular suitability of the gray-level histogram-based entropy on identifying misalignment artifacts, after applying an appropriate window level (bone window). CONCLUSIONS: Some of the proposed feature extraction algorithms show a strong correlation with the misalignment level. Especially, entropy-based methods showed very good correspondence, with the best of these being the type that uses the gray-level histogram for calculation. This makes it a suitable image feature for online-calibration.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Calibragem , Simulação por Computador , Desenho de Equipamento , Cabeça/patologia , Humanos , Erros Médicos , Modelos Estatísticos , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tórax/patologia
9.
Med Phys ; 39(6): 2985-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755683

RESUMO

PURPOSE: Monte Carlo (MC) simulation is an established technique for dose calculation in diagnostic radiology. The major drawback is its high computational demand, which limits the possibility of usage in real-time applications. The aim of this study was to develop fast on-site computed tomography (CT) specific MC dose calculations by using a graphics processing unit (GPU) cluster. METHODS: GPUs are powerful systems which are especially suited to problems that can be expressed as data-parallel computations. In MC simulations, each photon track is independent of the others; each launched photon can be mapped to one thread on the GPU, thousands of threads are executed in parallel in order to achieve high performance. For further acceleration, the authors considered multiple GPUs. The total computation was divided into different parts which can be calculated in parallel on multiple devices. The GPU cluster is an MC calculation server which is connected to the CT scanner and computes 3D dose distributions on-site immediately after image reconstruction. To estimate the performance gain, the authors benchmarked dose calculation times on a 2.6 GHz Intel Xeon 5430 Quad core workstation equipped with two NVIDIA GeForce GTX 285 cards. The on-site calculation concept was demonstrated for clinical and preclinical datasets on CT scanners (multislice CT, flat-detector CT, and micro-CT) with varying geometry, spectra, and filtration. To validate the GPU-based MC algorithm, the authors measured dose values on a 64-slice CT system using calibrated ionization chambers and thermoluminesence dosimeters (TLDs) which were placed inside standard cylindrical polymethyl methacrylate (PMMA) phantoms. RESULTS: The dose values and profiles obtained by GPU-based MC simulations were in the expected good agreement with computed tomography dose index (CTDI) measurements and reference TLD profiles with differences being less than 5%. For 10(9) photon histories simulated in a 256 × 256 × 12 voxel thorax dataset with voxel size of 1.36 × 1.36 × 3.00 mm(3), calculation times of about 70 and 24 min were necessary with single-core and multiple-core central processing unit (CPU) solutions, respectively. Using GPUs, the same MC calculations were performed in 1.27 min (single card) and 0.65 min (two cards) without a loss in quality. Simulations were thus speeded up by factors up to 55 and 36 compared to single-core and multiple-core CPU, respectively. The performance scaled nearly linearly with the number of GPUs. Tests confirmed that the proposed GPU-based MC tool can be easily adapted to different types of CT scanners and used as service providers for fast on-site dose calculations. CONCLUSIONS: The Monte Carlo software package provides fast on-site calculation of 3D dose distributions in the CT suite which makes it a practical tool for any type of CT-specific application.


Assuntos
Método de Monte Carlo , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Gráficos por Computador , Computadores , Imagens de Fantasmas , Software , Fatores de Tempo , Tomografia Computadorizada por Raios X/instrumentação
10.
Med Phys ; 39(6): 3229-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755706

RESUMO

PURPOSE: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. METHODS: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. RESULTS: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of tube voltage. For 50 mm, voltages larger than 50 kV were preferred. For all three phantom sizes stronger filtration led to notable dose reduction for soft tissue imaging. Validation measurements were found to match simulations well, with deviations being less than 10%. Mouse measurements confirmed simulation results. CONCLUSIONS: Optimal photon energies and tube settings strongly depend on both phantom size and imaging task at hand. For in vivo CE imaging and density differences, strong filtration and voltages of 50-65 kV showed good overall results. For soft tissue imaging of animals the size of a rat or larger, voltages higher than 65 kV allow to greatly reduce scan times while maintaining dose efficiency. For imaging of bone structures, usage of only minimum filtration and low tube voltages of 40 kV and below allow exploiting the high contrast of bone at very low energies. Therefore, a combination of two filtrations could prove beneficial for micro-CT: a soft filtration allowing for bone imaging at low voltages, and a variable stronger filtration (e.g., 0.2 mm Cu) for soft tissue and contrast-enhanced imaging.


Assuntos
Microtomografia por Raio-X/métodos , Animais , Cor , Processamento de Imagem Assistida por Computador , Camundongos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Doses de Radiação , Análise Espectral
11.
Med Phys ; 39(2): 658-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22320775

RESUMO

PURPOSE: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. METHODS: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. RESULTS: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. CONCLUSIONS: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of systems. For tissue dose assessment, MC calculations offer an accurate and fast alternative to TLD measurements allowing for dose calculations specific to any geometry and scan protocol.


Assuntos
Modelos Biológicos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Doses de Radiação , Radiometria/métodos , Radiometria/normas , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Animais , Simulação por Computador , Alemanha , Camundongos , Garantia da Qualidade dos Cuidados de Saúde/normas
12.
Med Phys ; 39(4): 2249-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22482646

RESUMO

PURPOSE: Modern computed tomography (CT) systems are supporting increasingly fast rotation speeds, which are a prerequisite for fast dynamic acquisition, e.g. in perfusion imaging, and for new modalities such as dedicated breast CT, where breathhold scanning is indicated. However, not all detector technologies are supporting the high frame rates that are necessary to retain high resolution for objects far away from the isocenter. Even on systems that would support a sufficiently high frame rate, the necessary bandwidth of the data transfer from the rotating gantry stills remains challenging. The authors evaluated a pixel shifting technique termed time-delayed summation (TDS) as a method of increasing resolution on fast rotating CT systems without the need to increase the frame rate. METHODS: In TDS mode, detector pixel values are shifted along rows during image acquisition to compensate for detector motion. In order to fully exploit TDS, focal spot position control (FSC) was used in combination with TDS. FSC applies a counter movement to the x-ray focal spot during image acquisition such that it is kept fixed in space. As a proof of concept, measurements were performed on a prototype photon counting detector capable of TDS. The detector was mounted on a movable table and a gold wire phantom was imaged with different TDS settings and detector velocities. Additionally, simulations of a broad range of TDS and FSC settings on two different modalities, a clinical CT scanner and a breast CT scanner, and two different detector geometries, flat and cylindrical, were performed to assess the gain in resolution and contrast in cylindrical water phantoms containing a small wire at distances from the phantom center varied from 5% to 90% of the phantom radius. As figures of merit, the modulation transfer function (MTF) at 10% and the maximum contrast were used and compared against the respective values when using step-and-shoot acquisition, which means stopping the rotation when a projection image is acquired. RESULTS: Measurements showed that detector movement and the resulting blurring of the wire projections were compensated to the expected degree when using the appropriate number of TDS shifts per frame (TDS factor). Using simulations it was found that when using the optimal TDS factor, over 90% of the resolution achieved in step-and-shot mode was reached for all investigated wire positions. TDS showed better performance on a cylindrical detector that on the same system with a flat detector. TDS factors that were deviating from the optimum by more than 1 shift led to a performance below that of standard continuous acquisition. CONCLUSIONS: The findings of this study encourage the combined usage of TDS and FSC in systems that require fast rotation. The integration of TDS in state-of-the-art x-ray detectors is feasible.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Rotação , Sensibilidade e Especificidade , Fatores de Tempo , Tomografia Computadorizada por Raios X/instrumentação
13.
Sensors (Basel) ; 12(7): 9423-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012551

RESUMO

In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ± 0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ± 0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements.

14.
Eur Radiol ; 21(3): 501-4, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21132304

RESUMO

Some of the major interests in medical physics over the last few years have concerned the technical advances in Computed Tomography and high field Magnetic Resonance Imaging. This review discusses the introduction of Dual Source CT and explains how it can not only offer faster data acquisition but also operate with lower radiation doses. This provides enormous benefits for all patients, but for cardiac and pediatric examinations in particular. The advances in MRI at 7 T esla are also impressive, with better signal to noise; cardiac and musculoskeletal applications are discussed; technical improvements are work-in-progress for other applications.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/tendências , Física/instrumentação , Física/tendências , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/tendências , Desenho de Equipamento/tendências
15.
Med Phys ; 38(1): 114-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361181

RESUMO

PURPOSE: The authors investigated the choice of spectra for the optimization of the dose-weighted contrast-to-noise ratio (CNRD) for a dedicated breast CT scanner. The objective is to provide the desired image quality level at minimal dose values. The CNRD was investigated as a function of energy or tube voltage and filtrations for various breast sizes and contrasts. METHODS: The authors performed simulations of the pendant female breast as cylinders consisting of a homogeneous mixture of adipose and glandular tissue with diameters from 6 to 18 cm. The contrasts of adipose tissue, calcium hydroxyapatite, and iodine contrast agent relative to glandular tissue were analyzed using inserts of 9 mm in diameter. Simulations were conducted for monochromatic and polychromatic radiation with a 3 mm Al or a 0.3 mm Cu filter. Simulations and measurements on an experimental micro-CT scanner were performed for validation purposes with a 6 cm water-equivalent cylinder, with inserts representing a pure density difference of 10%, calcium hydroxyapatite, and iodine contrast agent. A breast tissue sample embedded in paraffin was investigated to confirm the simulation results. RESULTS: Optimal tube voltages were found to be in the range of 30-55 kV for breast CT imaging. For example, with 3 mm Al or 0.3 mm Cu filtration, optimal tube voltages were about 53 and 48 kV, respectively, for the contrast iodine/glandular tissue for all diameters. With 3 mm Al filtration, optimal tube voltages increased from 30 to 37 kV and from 30 to 47 kV for the contrast calcium hydroxyapatite/glandular tissue and adipose/glandular tissue, respectively. Tube power requirements were estimated and the change in tube current relative to 80 kV was found to be between 4 and 14 and between 11 and 214 with 3 mm Al filtration or 0.3 mm Cu filtration, respectively. These numbers show that realizing the low optimal tube voltages may not be feasible in most cases due to power requirements. CONCLUSIONS: Depending on the filtration, the authors assume that a compromise solution has to be found between the highest potential dose reduction and a solution working with available x-ray sources. In view of the tube power constraints, the authors recommend aiming for tube voltages in the range of 50 kV and higher.


Assuntos
Mamografia/métodos , Tomografia Computadorizada por Raios X/métodos , Mama/anatomia & histologia , Mama/citologia , Eletricidade , Feminino , Humanos , Mamografia/instrumentação , Tamanho do Órgão , Doses de Radiação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/instrumentação , Água
16.
Med Phys ; 38(12): 6469-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149830

RESUMO

PURPOSE: Currently, only iodine- and barium-based contrast media (CM) are used in clinical contrast-enhanced computed tomography (CE-CT). High-Z metals would produce a higher contrast at equal mass density for the x-ray spectra used in clinical CT. Using such materials might allow for significant dose reductions in CE-CT. The purpose of this study was to quantify the potential for dose reduction when using CM based on heavy metals. METHODS: The contrast-to-noise ratio weighted by dose (CNRD) was determined as a function of scan protocol by means of measurements and simulations on a clinical CT scanner. For simulations, water cylinders with diameters 160, 320, 480, and 640 mm were used to cover a broad range of patient sizes. Measurements were conducted with 160 and 320 mm water-equivalent plastic cylinders. A central bore of 13 mm diameter was present in all phantoms. The tube voltage was varied from 80 to 140 kV for measurements and from 60 to 180 kV for simulations. Additional tin filtration of thicknesses 0.4, 0.8, and 1.2 mm was applied in the simulation to evaluate a range of spectral hardness. The bore was filled with a mixture of water and 10 mg/ml of pure iodine, holmium, gadolinium, ytterbium, osmium, tungsten, gold, and bismuth for the simulations and with aqueous solutions of ytterbium, tungsten, gold, and bismuth salts as well as Iopromid containing 10 mg/ml of the pure materials for the measurements. CNRDs were compared to iodine at phantom size-dependent reference voltages for all high-Z materials and the resulting dose reduction was calculated for equal contrast-to-noise ratio. RESULTS: Dose reduction potentials strongly depended on phantom size, spectral hardness, and tube voltage. Depending on the added filtration, a dose reduction of 19%-60% could be reached at 80 kV with gadolinium for the 160 mm phantom, 52%-69% at 100 kV with holmium for the 320 mm phantom, 62%-78% with 120 kV for hafnium and the 480 mm phantom and 74%-86% with 140 kV for gold and the 640 mm phantom. While gadolinium might be considered at 160 mm diameter, hafnium showed the best overall performance for phantom sizes of 320 mm and above. The measurements conducted on the clinical CT scanner showed very good agreement with simulations with deviations in the order of 5 to 10%. CONCLUSIONS: The results of this study encourage the development and use of CM based on high-Z materials, especially for adipose patients, where high tube voltages are necessary to reach sufficiently short scan times. Hafnium proved to be the best compromise for average-size and for adipose patients. Even higher-Z materials such as gold and bismuth showed a good overall performance in conjunction with high tube voltage, large patients or strong added filtration and may be recommended for scans under these conditions.


Assuntos
Aumento da Imagem/métodos , Metais , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/química , Estudos de Viabilidade , Metais/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Radiology ; 257(1): 158-66, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20851940

RESUMO

PURPOSE: To determine conversion factors for the new International Commission on Radiological Protection (ICRP) publication 103 recommendations for adult and pediatric patients and to compare the effective doses derived from Monte Carlo calculations with those derived from dose-length product (DLP) for different body regions and computed tomographic (CT) scanning protocols. MATERIALS AND METHODS: Effective dose values for the Oak Ridge National Laboratory phantom series, including phantoms for newborns; 1-, 5-, and 10-year-old children; and adults were determined by using Monte Carlo methods for a 64-section multidetector CT scanner. For each phantom, five anatomic regions (head, neck, chest, abdomen, and pelvis) were considered. Monte Carlo simulations were performed for spiral scanning protocols with different voltages. Effective dose was computed by using ICRP publication 60 and publication 103 recommendations. The calculated effective doses were compared with those derived from the DLP by using previously published conversion factors. RESULTS: In general, conversion factors determined on the basis of Monte Carlo calculations led to lower values for adults with both ICRP publications. Values up to 33% and 32% lower than previously published data were found for ICRP publication 60 and ICRP publication 103, respectively. For pediatric individuals, effective doses based on the Monte Carlo calculations were higher than those obtained from DLP and previously published conversion factors (eg, for chest CT scanning in 5-year-old children, an increase of about 76% would be expected). For children, a variation in conversion factors of up to 15% was observed when the tube voltage was varied. For adult individuals, no dependence on voltage was observed. CONCLUSION: Conversion factors from DLP to effective dose should be specified separately for both sexes and should reflect the new ICRP recommendations. For pediatric patients, new conversion factors specific for the spectrum used should be established.


Assuntos
Doses de Radiação , Radiometria/métodos , Tomografia Computadorizada por Raios X , Fatores Etários , Humanos , Agências Internacionais , Modelos Estatísticos , Imagens de Fantasmas , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Eficiência Biológica Relativa , Fatores Sexuais
18.
Eur Radiol ; 20(11): 2656-62, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20567831

RESUMO

PURPOSE: To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. METHODS AND MATERIALS: A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. RESULTS: FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). CONCLUSION: The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures.


Assuntos
Robótica/instrumentação , Punção Espinal , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X/instrumentação , Animais , Campos Eletromagnéticos , Técnicas In Vitro , Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Imagens de Fantasmas , Sus scrofa , Tomografia Computadorizada por Raios X/métodos
19.
Med Phys ; 37(6): 2719-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20632582

RESUMO

PURPOSE: A novel method for flat-detector computed tomography was developed to enable volume-of-interest (VOI) imaging at high resolution, low noise, and reduced dose. For this, a full low-dose overview (OV) scan and a local high-dose scan of a VOI are combined. METHODS: The first scan yields an overview of the whole object and enables the selection of an arbitrary VOI. The second scan of that VOI assures high image quality within the interesting volume. The combination of the two consecutive scans is based on a forward projection of the reconstructed OV volume that was registered to the VOI. The artificial projection data of the OV scan are combined with the measured VOI data in the raw data domain. Different projection values are matched by an appropriate transformation and weighting. The reconstruction is performed with a standard Feldkamp-type algorithm. In simulations, the combination of OV scan and VOI scan was investigated on a mathematically described phantom. In measurements, spatial resolution and noise were evaluated with image quality phantoms. Modulation transfer functions and noise values were calculated. Measurements of an anthropomorphic head phantom were used to validate the proposed method for realistic applications, e.g., imaging stents. In Monte Carlo simulations, 3D dose distributions were calculated and dose values were assessed quantitatively. RESULTS: By the proposed combination method, an image is generated which covers the whole object and provides the VOI at high image quality. In the OV image, a resolution of 0.7 lp/mm (line pairs per millimeter) and noise of 63.5 HU were determined. Inside the VOI, resolution was increased to 2.4 lp/mm and noise was decreased to 18.7 HU. For the performed measurements, the cumulative dose was significantly reduced in comparison to conventional scans by up to 93%. The dose of a high-quality scan, for example, was reduced from 97 to less than 7 mGy, while keeping image quality constant within the VOI. CONCLUSIONS: The proposed VOI application with two scans is an effective way to ensure high image quality within the VOI while simultaneously reducing the cumulative patient dose.


Assuntos
Imageamento Tridimensional/métodos , Doses de Radiação , Proteção Radiológica/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Med Phys ; 47(7): 2826-2837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155660

RESUMO

PURPOSE: Contrast-enhanced imaging of the breast is frequently used in breast MRI and has recently become more common in mammography. The purpose of this study was to make single-scan contrast-enhanced imaging feasible for photon-counting breast CT (pcBCT) and to assess the spectral performance of a pcBCT scanner by evaluating iodine maps and virtual non-contrast (VNC) images. METHODS: We optimized the settings of a pcBCT to maximize the signal-to-noise ratio between iodinated contrast agent and breast tissue. Therefore, an electronic energy threshold dividing the x-ray spectrum used into two energy bins was swept from 23.17 keV to 50.65 keV. Validation measurements were performed by placing syringes with contrast agent (2.5 mg/ml to 40 mg/ml) in phantoms with 7.5 cm and 12 cm in diameter. Images were acquired at different tube currents and reconstructed with 300 µm isotropic voxel size. Iodine maps and VNC images were generated using image-based material decomposition. Iodine concentrations and CT values were measured for each syringe and compared to the known concentrations and reference CT values. RESULTS: Maximal signal-to-noise ratios were found at a threshold position of 32.59 keV. Accurate iodine quantification (average root mean square error of 0.56 mg/ml) was possible down to a concentration of 2.5 mg/ml for all tube currents investigated. The enhancement has been sufficiently removed in the VNC images, so they can be interpreted as unenhanced CT images. Only minor changes of CT values compared to a conventional CT scan were observed. Noise was increased by the decomposition by a factor of 2.62 and 4.87 (7.5 cm and 12 cm phantoms) but did not compromise the accuracy of the iodine quantification. CONCLUSIONS: Accurate iodine quantification and generation of VNC images can be achieved using contrast-enhanced pcBCT from a single CT scan in the absence of temporal or spatial misalignment. Using iodine maps and VNC images, pcBCT has the potential to reduce dose, shorten examination and reading time, and to increase cancer detection rates.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Meios de Contraste , Imagens de Fantasmas , Tomógrafos Computadorizados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA